4.復(fù)數(shù)z=$\frac{2+i}{2-i}$的虛部為$\frac{4}{5}$.

分析 利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出.

解答 解:復(fù)數(shù)z=$\frac{2+i}{2-i}$=$\frac{(2+i)^{2}}{(2-i)(2+i)}$=$\frac{3+4i}{5}$的虛部為$\frac{4}{5}$.
故答案為:$\frac{4}{5}$.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知不等式組$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥0}\\{x≤2}\end{array}\right.$所表示的區(qū)域?yàn)镈,M(x,y)是區(qū)域D內(nèi)的點(diǎn),點(diǎn)A(-1,2),則z=$\overrightarrow{OA}$•$\overrightarrow{OM}$的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若數(shù)列的前5項(xiàng)分別是-$\frac{1}{2}$,$\frac{1}{3}$,-$\frac{1}{4}$,$\frac{1}{5}$-$\frac{1}{6}$,則它的通項(xiàng)公式是( 。
A.$\frac{{{{({-1})}^n}}}{n}$B.$\frac{{{{({-1})}^n}}}{n+1}$C.$\frac{{{{({-1})}^{n+1}}}}{n+1}$D.$\frac{{{{({-1})}^{n+1}}}}{n}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.路燈距地平面為8m,一個(gè)身高為1.6m的人以2m/s的速率在地平面上,從路燈在地平面上射影點(diǎn)C開始沿某直線離開路燈,那么人影長(zhǎng)度的變化速率v為( 。
A.$\frac{7}{20}$m/sB.$\frac{7}{24}$m/sC.$\frac{7}{22}$m/sD.$\frac{1}{2}$m/s

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知x>0,y>0,且$\frac{1}{x}$+$\frac{2}{y}$=1,若2x+y≥m恒成立,則實(shí)數(shù)m的取值范圍是(-∞,8],當(dāng)m取到最大值時(shí)x=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.求函數(shù)y=sin(2x-$\frac{π}{3}$)的周期及單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)a∈Z,且0≤a<13,若1220+a能被13整除,則a=( 。
A.0B.1C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知i為虛數(shù)單位,|$\frac{a+i}{i}$|=2,則正實(shí)數(shù)a=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若集合P={x|1≤2x<8},Q={1,2,3},則P∩Q=( 。
A.{1,2}B.{1}C.{2,3}D.{1,2,3}

查看答案和解析>>

同步練習(xí)冊(cè)答案