3.已知向量$\overrightarrow{a}$=(m,m-1),$\overrightarrow$=(2,1),且$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow{a}$|=$\frac{\sqrt{5}}{3}$.

分析 根據(jù)$\overrightarrow{a}⊥\overrightarrow$便可得出$\overrightarrow{a}•\overrightarrow=0$,從而可求出m的值,進(jìn)而得出$\overrightarrow{a}$的坐標(biāo),從而可得出$|\overrightarrow{a}|$的值.

解答 解:∵$\overrightarrow{a}⊥\overrightarrow$;
∴$\overrightarrow{a}•\overrightarrow=2m+m-1=0$;
∴$m=\frac{1}{3}$;
∴$\overrightarrow{a}=(\frac{1}{3},-\frac{2}{3})$;
∴$|\overrightarrow{a}|=\sqrt{\frac{1}{9}+\frac{4}{9}}=\frac{\sqrt{5}}{3}$.
故答案為:$\frac{\sqrt{5}}{3}$.

點(diǎn)評(píng) 考查向量垂直的充要條件,向量數(shù)量積的坐標(biāo)運(yùn)算,以及能根據(jù)向量坐標(biāo)求向量長(zhǎng)度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)=$\frac{2(x-a)}{{x}^{2}+bx+1}$是奇函數(shù).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)關(guān)于x的不等式2m-1>f(x)有解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=Asinωx(A>0,ω>0)在[-$\frac{π}{2}$,$\frac{2π}{3}$]上是增函數(shù),則ω的最大值是( 。
A.1B.2C.$\frac{3}{4}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列四個(gè)命題:
(1)函數(shù)f(x)在x>0時(shí)是增函數(shù),x<0時(shí)也是增函數(shù),所以f(x)是增函數(shù);
(2)若m=loga2,n=logb2且m>n,則a<b;
(3)函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間(-∞,4]上是減函數(shù),則實(shí)數(shù)a的取值范圍是a≤-3;
(4)y=log${\;}_{\frac{1}{2}}}$(x2+x-2)的減區(qū)間為(1,+∞).
其中正確的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x+$\frac{m}{x}$(x>0,m>0)和函數(shù)g(x)=a|x-b|+c(x∈R,a>0,b>0).問:
(1)證明:f(x)在($\sqrt{m}$,+∞)上是增函數(shù);
(2)把函數(shù)g1(x)=|x|和g2(x)=|x-1|寫成分段函數(shù)的形式,并畫出它們的圖象,總結(jié)出g2(x)的圖象是如何由g1(x)的圖象得到的.請(qǐng)利用上面你的結(jié)論說明:g(x)的圖象關(guān)于x=b對(duì)稱;
(3)當(dāng)m=1,b=2,c=0時(shí),若f(x)>g(x)對(duì)于任意的x>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知S2=6,an+1=4Sn+1,n∈N*
(I)求通項(xiàng)an;
(Ⅱ)設(shè)bn=an-n-4,求數(shù)列{|bn|}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列命題為真命題的是( 。
A.命題“若x>y,則x>|y|”的逆命題B.命題“若x2≤1,則x≤1”的否命題
C.命題“若x=1,則x2-x=0”的否命題D.命題“若$a>b,則\frac{1}{a}<\frac{1}$”的逆否命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=7,對(duì)任意的n∈N*都有an+1=-2+an,則使Sn最大的n的值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且 acosC+$\frac{1}{2}$c=b.
(1)求角A的大;
(2)若a=1,求周長(zhǎng)P的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案