已知f(1-x)=1+x,則f(x)的表達(dá)式為( )
A.f(x)=2-
B.f(x)=2+
C.f(x)=x-2
D.f(x)=x+1
【答案】分析:令1-x=t,則x=1-t,則①式可變?yōu)閒(t)=2-t,然后用x代換t,即可得f(x)的解析式.
解答:解:∵函數(shù)f(1-x)=1+x   ①
令1-x=t,則x=1-t,則①式可變?yōu)閒(t)=2-t
即f(x)=2-x.
故選A.
點(diǎn)評(píng):本題主要考查了函數(shù)解析式的求法及其常用方法,同時(shí)考查了換元法的思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知f(
x
+1)=x+2
,求函數(shù)f(x)的解析式;
(2)若二次函數(shù)f(x)滿足f(x+1)-f(x)=2x且f(0)=1,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
(1)已知函數(shù)f(x)=
1
2
x2   x≤2
log2(x+a)  x>2
在定義域內(nèi)是連續(xù)函數(shù),數(shù)列{an}通項(xiàng)公式為an=
1
an
,則數(shù)列{an}的所有項(xiàng)之和為1.
(2)過(guò)點(diǎn)P(3,3)與曲線(x-2)2-
(y-1)2
4
=1有唯一公共點(diǎn)的直線有且只有兩條.
(3)向量
a
=(x2,x+1)
,
b
=(1-x,t)
,若函數(shù)f(x)=
a
b
在區(qū)間[-1,1]上是增函數(shù),則實(shí)數(shù)t的取值范圍是(5,+∞);
(4)我們定義非空集合A的真子集的真子集為A的“孫集”,則集合{2,4,6,8,10}的“孫集”有26個(gè).
其中正確的命題有
(1)(2)(4)
(1)(2)(4)
(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在(0,+∞)上的函數(shù),且對(duì)任意正數(shù)x,y都有f(xy)=f(x)+f(y),且當(dāng)x>1時(shí),f(x)>0.
(1)證明f(x)在(0,+∞)上為增函數(shù);
(2)若f(3)=1,集合A={x|f(x)>f(x-1)+2},B={x|f(
(a+1)x-1x+1
)>0,a∈R}
,A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)為奇函數(shù),g(x)為偶函數(shù),且f(x)+g(x)=2log2(1-x)
(1)求f(x)及g(x)的解析式,并指出其單調(diào)性(無(wú)需證明).
(2)求使f(x)<0的x取值范圍.
(3)設(shè)h-1(x)是h(x)=log2x的反函數(shù),若存在唯一的x使
1-h-1(x)1+h-1(x)
=m-2x
成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
1
 (x<-1)
x+2(x≥-1)
,g(x)=
x-2(x≤1)
-1
 (x>1)
,h(x)=f(x)•g(x)
(1)求函數(shù)h(x)的解析式,并求它的單調(diào)遞增區(qū)間;
(2)若h(x)=t有四個(gè)不相等的實(shí)數(shù)根,求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案