在△ABC中,a,b,c分別是A、B、C的對邊,已知sinA,sinB,sinC成等比數(shù)列,且a2=c(a+c-b),求角A的大小及
cbsinB
的值.
分析:直接利用正弦定理以及余弦定理求出A然后利用正弦定理化簡所求表達(dá)式的值,求出結(jié)果健康卡.
解答:解:在△ABC中,a,b,c分別是A、B、C的對邊,sinA,sinB,sinC成等比數(shù)列,
所以sin2B=sinAsinC,
∴b2=ac,因?yàn)閍2=c(a+c-b),
由余弦定理可得cosA=
b2+c2-a2
2bc
=
1
2
,A=60°.
由正弦定理可得
c
bsinB
=
b2
a
bsinB
=
b
asinB
=
1
sinA
=
1
3
2
=
2
3
3
點(diǎn)評:本題考查等比數(shù)列以及正弦定理與余弦定理的應(yīng)用,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A、∠B、∠C所對的邊長分別是a、b、c.滿足2acosC+ccosA=b.則sinA+sinB的最大值是( 。
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a<b<c,B=60°,面積為10
3
cm2,周長為20cm,求此三角形的各邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對邊,已知
.
m
=(cos
C
2
,sin
C
2
)
,
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面積S=
3
3
2
,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A,B,C為三個內(nèi)角,若cotA•cotB>1,則△ABC是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)函數(shù)的圖象是由y=sinx的圖象經(jīng)過如下三步變換得到的:
①將y=sinx的圖象整體向左平移
π
6
個單位;
②將①中的圖象的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的
1
2
;
③將②中的圖象的橫坐標(biāo)不變,縱坐標(biāo)伸長為原來的2倍.
(1)求f(x)的周期和對稱軸;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步練習(xí)冊答案