【題目】已知在平面直角坐標系中,圓的參數(shù)方程為為參數(shù)).以原點為極點,軸的非負半軸為極軸,取相同的單位長度建立極坐標系.

1)求圓的普通方程及其極坐標方程;

2)設直線的極坐標方程為,射線與圓的交點為(異于極點),與直線的交點為,求線段的長.

【答案】(1) 普通方程為: ; 極坐標方程為:.(2)

【解析】

1)由圓的參數(shù)方程消去參數(shù),得到普通方程,再由直角坐標與極坐標的互化公式,得到極坐標方程;

2)將代入圓的極坐標方程,得到;將代入直線的極坐標方程,得到,再由,即可得出結果.

1)由

平方相加,得:,

所以圓的普通方程為:

,∴

化簡得圓的極坐標方程為:

2)把代入圓的極坐標方程可得:

代入直線的極坐標方程可得:

所以線段的長

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)內有兩個零點,則實數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)fx)在(0+∞)上是減函數(shù),其實數(shù)m的取值范圍;

2)若函數(shù)fx)在(0,+∞)上存在兩個極值點x1,x2,證明:lnx1+lnx22

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)判斷函數(shù)在區(qū)間上零點的個數(shù);

2)函數(shù)在區(qū)間上的極值點從小到大分別為,證明:

(Ⅰ);

(Ⅱ)對一切成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是等邊三角形, 邊上的動點(含端點),記,.

(1)求的最大值;

(2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=exlnx+axaR).

1)當a=﹣e+1時,求函數(shù)fx)的單調區(qū)間;

2)當a≥﹣1時,求證:fx)>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】的內角,,所對邊分別為,.已知.

(1) ;

(2) 為銳角三角形,且,求面積的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)討論函數(shù)的單調性;

2)當, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系上放置一個邊長為1的正方形,此正方形沿軸滾動(向左或者向右均可),滾動開始時,點在原點處,例如:向右滾動時,點的軌跡起初時以點為圓心,1為半徑的圓弧,然后以點軸交點為圓心,長度為半徑……,設點的縱坐標與橫坐標的函數(shù)關系式是,該函數(shù)相鄰兩個零點之間的距離為.

(1)寫出的值,并求出當時,點軌跡與軸所圍成的圖形的面積,研究該函數(shù)的性質并填寫下面的表格:

函數(shù)性質

結論

奇偶性

單調性

遞增區(qū)間

遞減區(qū)間

零點

(2)已知方程在區(qū)間上有11個根,求實數(shù)的取值范圍

(3)寫出函數(shù)的表達式.

查看答案和解析>>

同步練習冊答案