分析 (Ⅰ)求出函數的導數,通過討論a的范圍,求出函數的單調區(qū)間即可;
(Ⅱ)結合(Ⅰ)得到函數f(x)在x∈[-a,+∞)上f(x)≥f(-2),而x∈(-∞,-a)時,f(x)=ex[x(x+a)+a]>0,從而求出f(x)的最小值是f(-2);法二:根據函數的單調性求出f(x)的最小值是f(-2)即可.
解答 解:(Ⅰ)f′(x)=ex(x+2)(x+a),
由f′(x)=0,解得:x=-2或x=-a,
①-a=-2即a=2時,f′(x)=ex(x+2)2≥0恒成立,
∴函數f(x)在R遞增;
②-a>-2即a<2時,x,f′(x),f(x)的變化如下:
x | (-∞,-2) | -2 | (-2,-a) | -a | (-a,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 遞增 | 遞減 | 遞增 |
x | (-∞,-a) | -a | (-a,-2) | -2 | (-2,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 遞增 | 遞減 | 遞增 |
點評 本題考查了函數的單調性、最值問題,考查導數的應用以及分類討論思想,是一道中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | y=$\frac{1}{{5}^{2-x}-1}$ | B. | y=($\frac{1}{2}$)1-2x | C. | y=$\sqrt{(\frac{1}{2})^{x}-1}$ | D. | y=$\sqrt{1-{2}^{x}}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (0,4) | B. | $({-∞,1}),({\frac{4}{3},4})$ | C. | $({0,\frac{4}{3}})$ | D. | (0,1),(4,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com