如圖,在四邊形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四邊形ABCD繞AD旋轉(zhuǎn)一周所成幾何體的表面積及體積.
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第六章第3課時練習卷(解析版) 題型:解答題
已知函數(shù)f(x)=,x∈[1,+∞).
(1)當a=4時,求函數(shù)f(x)的最小值;
(2)若對任意x∈[1,+∞),f(x)>0恒成立,試求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第六章第1課時練習卷(解析版) 題型:解答題
已知f(x)=-3x2+a(6-a)x+b.
(1)解關(guān)于a的不等式f(1)>0;
(2)當不等式f(x)>0的解集為(-1,3)時,求實數(shù)a、b的值.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第八章第6課時練習卷(解析版) 題型:解答題
如圖所示,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,點D是BC的中點.
(1)求異面直線A1B與C1D所成角的余弦值;
(2)求平面ADC1與平面ABA1所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第八章第6課時練習卷(解析版) 題型:填空題
已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a、b、c三個向量共面,則實數(shù)λ等于________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第八章第5課時練習卷(解析版) 題型:填空題
如圖所示,在正三棱錐S-ABC中,M、N分別是SC、BC的中點,且MN⊥AM,若側(cè)棱SA=2,則正三棱錐SABC外接球的表面積是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第八章第5課時練習卷(解析版) 題型:解答題
如圖①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線,點E在線段AC上,CE=4.如圖②所示,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連結(jié)AB,設(shè)點F是AB的中點.
圖①圖②
(1)求證:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G為直線AC與平面BDG的交點,求三棱錐B-DEG的體積.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第八章第4課時練習卷(解析版) 題型:解答題
如圖①,E、F分別是直角三角形ABC邊AB和AC的中點,∠B=90°,沿EF將三角形ABC折成如圖②所示的銳二面角A1EFB,若M為線段A1C的中點.求證:
(1)直線FM∥平面A1EB;
(2)平面A1FC⊥平面A1BC.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第八章第2課時練習卷(解析版) 題型:解答題
如圖所示,在三棱柱ABCA1B1C1中,M、N分別是BC和A1B1的中點.求證:MN∥平面AA1C1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com