若θ是任意實數(shù),則方程x2+4y2cos(θ+
π4
)
=1所表示的曲線一定不是(  )
分析:拋物線方程中具有x或y的一次項,根據(jù)方程x2+4y2cos(θ+
π
4
)
=1沒有x或y的一次項,即可得到結論.
解答:解:拋物線方程中具有x或y的一次項,由于方程x2+4y2cos(θ+
π
4
)
=1沒有x或y的一次項,方程不可能是拋物線,
故選D.
點評:本題考查方程與曲線,解題的關鍵是明確曲線對應方程的特點,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列命題:
①對于命題P:?x∈R,x2+x+1<0,則?P:?x∈R,x2+x+1<0.
②G2=ab是三個數(shù)a、G、b成等比數(shù)列的充要條件;
③若函數(shù)y=f(x)對任意的實數(shù)x滿足f(x+1)=-f(x),則f(x)是周期函數(shù);
④如果一組數(shù)據(jù)中,每個數(shù)都加上同一個非零常數(shù),則這組數(shù)據(jù)的平均數(shù)和方差都改變.
其中正確命題的序號為
.(把你認為正確的命題序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•陜西一模)下列三個結論中
①命題p:“對于任意的x∈R,都有x2≥0”,則?p為“存在x∈R,使得x2<0”;②某人5 次上班途中所花的時間(單位:分鐘)分別為8、10、11、9、x.已知這組數(shù)據(jù)的平均數(shù)為10,則其方差為2;③若函數(shù)f(x)=x2+2ax+2在區(qū)間(-∞,4]上是減函數(shù),則實數(shù)a的取值范圍是(-∞,-4).你認為正確的結論序號為
①②
①②

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

下列三個結論中
①命題p:“對于任意的x∈R,都有x2≥0”,則?p為“存在x∈R,使得x2<0”;②某人5 次上班途中所花的時間(單位:分鐘)分別為8、10、11、9、x.已知這組數(shù)據(jù)的平均數(shù)為10,則其方差為2;③若函數(shù)f(x)=x2+2ax+2在區(qū)間(-∞,4]上是減函數(shù),則實數(shù)a的取值范圍是(-∞,-4).你認為正確的結論序號為________.

查看答案和解析>>

科目:高中數(shù)學 來源:陜西一模 題型:填空題

下列三個結論中
①命題p:“對于任意的x∈R,都有x2≥0”,則?p為“存在x∈R,使得x2<0”;②某人5 次上班途中所花的時間(單位:分鐘)分別為8、10、11、9、x.已知這組數(shù)據(jù)的平均數(shù)為10,則其方差為2;③若函數(shù)f(x)=x2+2ax+2在區(qū)間(-∞,4]上是減函數(shù),則實數(shù)a的取值范圍是(-∞,-4).你認為正確的結論序號為______.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年陜西省五校高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

下列三個結論中
①命題p:“對于任意的x∈R,都有x2≥0”,則¬p為“存在x∈R,使得x2<0”;②某人5 次上班途中所花的時間(單位:分鐘)分別為8、10、11、9、x.已知這組數(shù)據(jù)的平均數(shù)為10,則其方差為2;③若函數(shù)f(x)=x2+2ax+2在區(qū)間(-∞,4]上是減函數(shù),則實數(shù)a的取值范圍是(-∞,-4).你認為正確的結論序號為   

查看答案和解析>>

同步練習冊答案