【題目】設(shè)定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x),且 ,則函數(shù)g(x)=lg x的圖象與函數(shù)f(x)的圖象的交點個數(shù)為( )
A.3
B.5
C.9
D.10

【答案】C
【解析】因為函數(shù)f(x)滿足f(x+2)=-f(x),所以f(x+4)=-f(x+2)=f(x),所以函數(shù)f(x)是以4為周期的周期函數(shù),所以在同一平面直角坐標(biāo)系內(nèi)作出函數(shù)f(x)的圖象與函數(shù)g(x)=lg x的圖象如圖所示,由圖可知兩曲線有9個交點.
所以答案是:C.

【考點精析】根據(jù)題目的已知條件,利用函數(shù)的零點與方程根的關(guān)系的相關(guān)知識可以得到問題的答案,需要掌握二次函數(shù)的零點:(1)△>0,方程 有兩不等實根,二次函數(shù)的圖象與 軸有兩個交點,二次函數(shù)有兩個零點;(2)△=0,方程 有兩相等實根(二重根),二次函數(shù)的圖象與 軸有一個交點,二次函數(shù)有一個二重零點或二階零點;(3)△<0,方程 無實根,二次函數(shù)的圖象與 軸無交點,二次函數(shù)無零點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合U={1,2,…,100},TU.對數(shù)列{an}(n∈N*),規(guī)定:
①若T=,則ST=0;
②若T={n1 , n2 , …,nk},則ST=a +a +…+a
例如:當(dāng)an=2n,T={1,3,5}時,ST=a1+a3+a5=2+6+10=18.
已知等比數(shù)列{an}(n∈N*),a1=1,且當(dāng)T={2,3}時,ST=12,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】所謂正三棱錐,指的是底面為正三角形,頂點在底面上的射影為底面三角形中心的三棱錐,在正三棱錐 中, 的中點,且 ,底面邊長 ,則正三棱錐 的體積為 , 其外接球的表面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓 經(jīng)過 為坐標(biāo)原點,線段 的中點在圓 上.
(1)求 的方程;
(2)直線 不過曲線 的右焦點 ,與 交于 兩點,且 與圓 相切,切點在第一象限, 的周長是否為定值?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)f(x)= 則函數(shù)h(x)的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】候鳥每年都要隨季節(jié)的變化而進行大規(guī)模地遷徙,研究某種鳥類的專家發(fā)現(xiàn),該種鳥類的飛行速度v(單位:m/s)與其耗氧量Q之間的關(guān)系為:v=a+blog3 (其中a,b是實數(shù)).據(jù)統(tǒng)計,該種鳥類在靜止的時候其耗氧量為30個單位,而其耗氧量為90個單位時,其飛行速度為1 m/s.
(1)求出a,b的值;
(2)若這種鳥類為趕路程,飛行的速度不能低于2 m/s,則其耗氧量至少要多少個單位?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在扶貧活動中,為了盡快脫貧(無債務(wù))致富,企業(yè)甲將經(jīng)營狀況良好的某種消費品專賣店以5.8萬元的優(yōu)惠價格轉(zhuǎn)讓給了尚有5萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經(jīng)營的利潤中,首先保證企業(yè)乙的全體職工每月最低生活費的開支3 600元后,逐步償還轉(zhuǎn)讓費(不計息).在甲提供的資料中:①這種消費品的進價為每件14元;②該店月銷量Q(百件)與銷售價格P(元)的關(guān)系如圖所示;③每月需各種開支2 000元.

(1)當(dāng)商品的價格為每件多少元時,月利潤扣除職工最低生活費的余額最大?并求最大余額;
(2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,島 、 相距 海里.上午9點整有一客輪在島 的北偏西 且距島 海里的 處,沿直線方向勻速開往島 ,在島 停留 分鐘后前往 市.上午 測得客輪位于島 的北偏西 且距島 海里的 處,此時小張從島 乘坐速度為 海里/小時的小艇沿直線方向前往 島換乘客輪去 市.

(Ⅰ)若 ,問小張能否乘上這班客輪?
(Ⅱ)現(xiàn)測得 .已知速度為 海里/小時( )的小艇每小時的總費用為( )元,若小張由島 直接乘小艇去 市,則至少需要多少費用?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) , ),其圖像與直線 相鄰兩個交點的距離為 ,若 對于任意的 恒成立,則 的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案