已知直線l1:(a+2)x+(a+3)y-5=0和l2:6x+(2a-1)y-5=0平行,則a=
-
5
2
-
5
2
分析:直接利用兩條直線平行的充要條件求解即可.
解答:解:因?yàn)橹本l1:(a+2)x+(a+3)y-5=0和l2:6x+(2a-1)y-5=0平行,
所以
a+2
6
=
a+3
2a-1
-5
-5
,解得a=-
5
2

故答案為:-
5
2
點(diǎn)評(píng):本題考查直線的平行的充要條件的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、已知直線l1:(a+1)x+y-2=0與直線l2:ax+(2a+2)y+1=0互相垂直,則實(shí)數(shù)a的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1過點(diǎn)A(3,0),直線l2過點(diǎn)B(0,4),l1∥l2,用d表示l1到l2的距離,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1∥l2,A是l1,l2之間的一定點(diǎn),并且A點(diǎn)到l1,l2的距離分別為3和4,B是直線l2上一動(dòng)點(diǎn),作AC⊥AB,且使AC與直線l1交于點(diǎn)C,則△ABC面積的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1經(jīng)過點(diǎn)A(-2,1),直線l2:x+2y-1=0,
(1)若直線l1∥l2,求直線l1的方程.
(2)若直線l1⊥l2,求直線l1的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案