[2014·泰安模擬]曲線=1(m<6)與曲線=1(5<n<9)的(  )
A.焦距相等B.離心率相等
C.焦點相同D.準線相同
A
∵m<6,∴10-m>6-m>0.
∴曲線=1表示焦點在x軸上的橢圓,
其焦距為2=4.
∵5<n<9,∴5-n<0,9-n>0.
∴曲線=1,即=1.
表示焦點在y軸上的雙曲線,
其焦距為2=4,故選A.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓C的中心在原點,焦點在x軸上,兩焦點F1,F(xiàn)2之間的距離為2,橢圓上第一象限內(nèi)的點P滿足PF1⊥PF2,且△PF1F2的面積為1.
(1)求橢圓C的標準方程;
(2)若橢圓C的右頂點為A,直線l:y=kx+m(k≠0)與橢圓C交于不同的兩點M,N,且滿足AM⊥AN.求證:直線l過定點,并求出定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓的焦點在x軸上,左右頂點分別為,上頂點為B,拋物線分別以A,B為焦點,其頂點均為坐標原點O,相交于直線上一點P.
(1)求橢圓C及拋物線的方程;
(2)若動直線與直線OP垂直,且與橢圓C交于不同的兩點M,N,已知點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓的離心率為,軸被曲線截得的線段長等于的長半軸長。

(1)求的方程;
(2)設軸的交點為M,過坐標原點O的直線相交于點A,B,直線MA,MB分別與相交與D,E.
①證明:
②記△MAB,△MDE的面積分別是.問:是否存在直線,使得=?請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

分別是橢圓的左右焦點,上一點且軸垂直,直線的另一個交點為
(1)若直線的斜率為,求的離心率;
(2)若直線軸上的截距為,且,求

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的一個焦點在拋物線的準線上,則該橢圓的離心率為( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

是平面兩定點,點滿足,則點的軌跡方程是          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓過點,兩個焦點為,.
(1)求橢圓的方程;
(2),是橢圓上的兩個動點,如果直線的斜率與的斜率互為相反數(shù),證明直線的斜率為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C過點,兩焦點為、,是坐標原點,不經(jīng)過原點的直線與該橢圓交于兩個不同點、,且直線、的斜率依次成等比數(shù)列.
(1)求橢圓C的方程;       
(2)求直線的斜率;
(3)求面積的范圍.

查看答案和解析>>

同步練習冊答案