已知f(x)=ax3-2ax2+b,(a≠0).
(Ⅰ)求出f(x)的極值點(diǎn),并指出其是極大值點(diǎn)還是極小值點(diǎn);
(Ⅱ)若f(x)在區(qū)間[-2,1]上最大值是5,最小值是-11,求f(x)的解析式.
分析:(1)分類討論參數(shù)a,滿足f′(x)=0的點(diǎn)附近的導(dǎo)數(shù)的符號(hào)的變化情況,來確定極值點(diǎn),從而求出極值;
(2)先求出f(x)在區(qū)間[-2,1]的極值,將f(x)的各極值與其端點(diǎn)的函數(shù)值比較,其中最大的一個(gè)就是最大值,最小的一個(gè)就是最小值,建立兩個(gè)等量關(guān)系,求出參數(shù)a,b即可.
解答:解(Ⅰ)∵f(x)=ax3-2ax2+b,
∴f′(x)=3ax2-4ax=ax(3x-4)
令f′(x)=0,得x1=0,x2=
4
3

ia<0時(shí)
精英家教網(wǎng)
函數(shù)的極值點(diǎn)是0,
4
3
,0是極小值點(diǎn),
4
3
是極大值點(diǎn)(5分)
ii、a>0時(shí)
同理可以驗(yàn)證0是極大值點(diǎn),
4
3
是極小值點(diǎn)(6分)
(Ⅱ)f(x)在區(qū)間[-2,1]上最大值是5,
最小值是-11,f′(x)=0,x1=0,x2=
4
3
∉[-2,1]

若a>0,
精英家教網(wǎng)(8分)

因此f(0)必為最大值,∴f(0)=5,得b=5,
∵f(-2)=-16a+5,f(1)=-a+5,∴f(1)>f(-2)
∴f(-2)=-16a+5=-11,∴a=1
∴f(x)=x3-2x2+5;(11分)
若a<0,同理可得f(0)為最小值,∴f(0)=-11,得b=-11,
∵f(-2)=-16a+5,f(1)=-a+5,∴f(-2)>f(1)
∴f(-2)=f(x)max=5,∴a=-1∴f(x)=-x3+2x2-11.(14分)
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的極值,以及待定系數(shù)法求函數(shù)解析式和利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax3+bx+2,且f(-5)=3,則f(5)的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax3-bx+1且f(-4)=7,則f(4)=
-5
-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax3+bx+1,f(-2)=2,則f(2)=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax3+bsinx+6,a、b∈R,若f(3)=10,則f(-3)=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F(x)=ax3+bx5+cx3+dx-6,F(xiàn)(-2)=10,則F(2)的值為( 。
A、-22B、10C、-10D、22

查看答案和解析>>

同步練習(xí)冊(cè)答案