A. | B. | ||||
C. | D. |
分析 由特殊值法可排除B,D;再求導(dǎo)f′($\frac{π}{2}$)=sin$\frac{π}{2}$sin$\frac{π}{2}$+(1-cos$\frac{π}{2}$)cos$\frac{π}{2}$=1>0,從而確定答案.
解答 解:f($\frac{π}{2}$)=(1-cos$\frac{π}{2}$)sin$\frac{π}{2}$=1,
故排除B,D;
f(-$\frac{π}{2}$)=(1-cos(-$\frac{π}{2}$))sin(-$\frac{π}{2}$)=-1,
∵f′(x)=sinxsinx+(1-cosx)cosx,
∴f′($\frac{π}{2}$)=sin$\frac{π}{2}$sin$\frac{π}{2}$+(1-cos$\frac{π}{2}$)cos$\frac{π}{2}$=1>0,
∴在點(diǎn)($\frac{π}{2}$,1)處為增函數(shù),
故排除C,
故選A.
點(diǎn)評(píng) 本題考查了函數(shù)的圖象與函數(shù)的性質(zhì)應(yīng)用,考查了數(shù)形結(jié)合的思想及導(dǎo)數(shù)的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -a>-b | B. | a+c>b+c | C. | $\frac{1}{a}>\frac{1}$ | D. | (-a)2>(-b)2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
x | 3 | 4 | 5 | 6 | 7 |
y | 4 | a+b-4 | -0.5 | 0.5 | -2 |
A. | 增加1.4個(gè)單位 | B. | 減少1.4個(gè)單位 | C. | 增加1.2個(gè)單位 | D. | 減少1.2個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 命題“?x0∈R,${x_0}^2-{x_0}≤0$”的否定為“?x∈R,x2-x>0” | |
B. | 命題“在△ABC中,A>30°,則$sinA>\frac{1}{2}$”的逆否命題為真命題 | |
C. | 若非零向量$\overrightarrow a$、$\overrightarrow b$滿足$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|-|{\overrightarrow b}|$,則$\overrightarrow a$與$\overrightarrow b$共線 | |
D. | 設(shè){an}是公比為q的等比數(shù)列,則“q>1”是“{an}為遞增數(shù)列”的充分必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a3+a8 | B. | a10 | C. | a3+a5+a7 | D. | a2+a7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {2} | B. | {4,6} | C. | {1,3,5} | D. | {4,6,7,8} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com