已知函數(shù)() =,g ()=+。
(1)求函數(shù)h ()=()-g ()的零點(diǎn)個(gè)數(shù),并說明理由;
(2)設(shè)數(shù)列滿足,,證明:存在常數(shù)M,使得對(duì)于任意的,都有≤ .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù) ().
(1)若,求函數(shù)的極值;
(2)設(shè).
① 當(dāng)時(shí),對(duì)任意,都有成立,求的最大值;
② 設(shè)的導(dǎo)函數(shù).若存在,使成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x2-4,設(shè)曲線y=f(x)在點(diǎn)(xn,f(xn))處的切線與x軸的交點(diǎn)為(xn+1,0)(n∈N +),其中xn為正實(shí)數(shù).
(1)用xn表示xn+1;
(2)若x1=4,記an=lg,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項(xiàng)公式;
(3)若x1=4,bn=xn-2,Tn是數(shù)列{bn}的前n項(xiàng)和,證明Tn<3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù) ,.
(1)當(dāng) 時(shí),求函數(shù) 的最小值;
(2)當(dāng) 時(shí),求證:無論取何值,直線均不可能與函數(shù)相切;
(3)是否存在實(shí)數(shù),對(duì)任意的 ,且,有恒成立,若存在求出的取值范圍,若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(為常數(shù),是自然對(duì)數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸平行.
(Ⅰ)求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),其中為的導(dǎo)函數(shù).證明:對(duì)任意.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2013•浙江)已知a∈R,函數(shù)f(x)=2x3﹣3(a+1)x2+6ax
(Ⅰ)若a=1,求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)若|a|>1,求f(x)在閉區(qū)間[0,|2a|]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x3-ax+1.
(1)求x=1時(shí),f(x)取得極值,求a的值;
(2)求f(x)在[0,1]上的最小值;
(3)若對(duì)任意m∈R,直線y=-x+m都不是曲線y=f(x)的切線,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)若函數(shù)在上為減函數(shù),求實(shí)數(shù)的最小值;
(2)若存在,使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)()
(1)若在點(diǎn)處的切線方程為,求的解析式及單調(diào)遞減區(qū)間;
(2)若在上存在極值點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com