如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,平面PCD⊥平面ABCD,M為PC中點(diǎn).求證:
(1)PA∥平面MDB;
(2)PD⊥BC.
(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.
解析試題分析:(1)線面平行的判定關(guān)鍵在證相應(yīng)線線平行,線線平行的證明或?qū)で笮枰Y(jié)合平面幾何的知識(shí),如中位線平行于底面,因?yàn)楸绢}中M為PC中點(diǎn),所以應(yīng)取BD的中點(diǎn)作為解題突破口;(2)線線垂直的證明一般需要經(jīng)過(guò)多次線線垂直與線面垂直的轉(zhuǎn)化,而對(duì)于面面垂直,基本是單向轉(zhuǎn)化,即作為條件,就將其轉(zhuǎn)化為線面垂直;作為結(jié)論,只需尋求線面垂直. 如本題中面PCD與面ABCD垂直,就轉(zhuǎn)化為BC平面PCD,到此所求問(wèn)題轉(zhuǎn)化為:已知線面垂直,要求證線線垂直.在線線垂直與線面垂直的轉(zhuǎn)化過(guò)程中,要注意充分應(yīng)用平面幾何中的垂直條件,如矩形鄰邊相互垂直.
試題解析:證明:(1)連結(jié)AC交BD于點(diǎn)O,連結(jié)OM. 2分
因?yàn)镸為PC中點(diǎn),O為AC中點(diǎn),
所以MO//PA. 4分
因?yàn)镸O平面MDB,PA平面MDB,
所以PA//平面MDB. 7分
(2)因?yàn)槠矫鍼CD平面ABCD,
平面PCD平面ABCD=CD,
BC平面ABCD,BCCD,
所以BC平面PCD. 12分
因?yàn)镻D平面PCD,
所以BCPD 14分
考點(diǎn):直線與平面平行判定定理,面面垂直性質(zhì)定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐中,底面為梯形,,,,平面平面,.
(1)求證:平面;
(2)求證:;
(3)是否存在點(diǎn),到四棱錐各頂點(diǎn)的距離都相等?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四邊形PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=.
(Ⅰ)若M為PA中點(diǎn),求證:AC∥平面MDE;
(Ⅱ)求平面PAD與PBC所成銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
等邊三角形的邊長(zhǎng)為3,點(diǎn)、分別是邊、上的點(diǎn),且滿足(如圖1).將△沿折起到△的位置,使二面角為直二面角,連結(jié)、 (如圖2).
(Ⅰ)求證:平面;
(Ⅱ)在線段上是否存在點(diǎn),使直線與平面所成的角為?若存在,求出的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖:長(zhǎng)方形所在平面與正所在平面互相垂直,分別為的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)試問(wèn):在線段上是否存在一點(diǎn),使得平面平面?若存在,試指出點(diǎn)
的位置,并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱柱中,平面,,, ,分別是,的中點(diǎn).
(Ⅰ)求證:∥平面;
(Ⅱ)求證:平面平面;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知平行六面體ABCD—A1B1C1D1的底面為正方形,O1、O分別為上、下底面的中心,且A1在底面ABCD上的射影是O。
(Ⅰ)求證:平面O1DC⊥平面ABCD;
(Ⅱ)若∠A1AB=60°,求平面BAA1與平面CAA1的夾角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直三棱柱中,,是棱上的一點(diǎn),是的延長(zhǎng)線與的延長(zhǎng)線的交點(diǎn),且∥平面。
(1)求證:;
(2)求二面角的平面角的余弦值;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com