已知m∈R,函數(shù)f(x)=x2-mx,g(x)=lnx.
(1)當x∈[1,2]時,如果函數(shù)f(x)的最大值為f(1),求m的取值范圍;
(2)若對有意義的任意x,不等式f(x)>g(x)恒成立,求m的取值范圍;
(3)當m在什么范圍內(nèi)取值時,方程f(x)=g(x)分別無實根?只有一實根?有兩個不同實根?
分析:(1)本問題求出函數(shù)的最值代入已知最大值為f(1),即可解得參數(shù)m的值,
(2)本題恒成立問題轉(zhuǎn)化為函數(shù)的最值來解答,具體方法是由f(x)>g(x)等價于x2-mx>lnx,即m<
x2-lnx
x
=x-
lnx
x
,構造出函數(shù)t(x)=x-
lnx
x
,利用導數(shù)工具可以求解.
(3)我們對本題可以這樣處理,想根據(jù)函數(shù)y=x2,y=mx,y=lnx的圖象的增減性,判斷猜測出參數(shù)m取值時分別對應方程的根的情況,然后來證明這個結(jié)論.證明時可利用新構造的函數(shù)h(x)=f(x)-g(x),利用導數(shù)以及函數(shù)的單調(diào)性,求出函數(shù)的最值來判斷根x0的性質(zhì)以辨別是否存在這個根.
解答:解:(1)函數(shù)f(x)=x2-mx的圖象開口向上,函數(shù)在x=1或x=2處取得最大值,則f(1)≥f(2),1-m≥4-2m,得:m≥3.
(2)f(x)>g(x)等價于x2-mx>lnx,其中x>0,即:由m<
x2-lnx
x
=x-
lnx
x
,令t(x)=x-
lnx
x
,得t′(x)=
x2+lnx-1
x2
,
當x=1時t′(x)=0,當x∈(0,1)時t′(x)<0;當x∈(1,+∞)時t′(x)>0,m<t(x)min=t(1)=1,∴m<1.
(3)設h(x)=f(x)-g(x)=x2-mx-lnx,其中x>0.觀察得當m=1時,方程f(x)=g(x)即為:x2-x-lnx=0的一個根為x=1.猜測當m<1,m=1,m>1時方程分別無根,只有一個根,有且只有兩個根.
證明:∵h′(x)=2x-m-
1
x
=
2x2-mx-1
x2
=0,等價于2x2-mx-1=0此方程有且只有一個正根為x0=
m+
m2+8
4
,
且當x∈(0,x0)時,h′(x)<0;當x∈(x0,+∞)時,h′(x)>0,函數(shù)只有一個極值h(x)min=h(x0)=x02-mx0-lnx0
1°當m<1時,由(2)得f(x)>g(x)恒成立,方程無解.
2°當m=1時,x0=1,h(x)min=h(1)=0,則h(x)≥h(x)min=0,當且僅當x=1時,h(x)=0,此時只有一個根x=1.
3°當m>1時,x0=
m+
m2+8
4
,關于m在(1,+∞)上遞增,∴x0∈(1,+∞)時lnx0>0,∵m>1?1<m2?8<8m2?m2+8<9m2?
m2+8
<3m

?m+
m2+8
<4m
?
m+
m2+8
4
< m
?x0<m.∴h(x)min=h(x0)=x02-mx0-lnx0=x0(x0-m)-lnx0<0.證畢
點評:本題考查二次函數(shù)在定區(qū)間上的最值問題,函數(shù)類型簡單,是一個二次函數(shù),第一問的設計很容易,后面兩問的綜合性較強,對學生的邏輯思維能力,運算能力有很好的鍛煉價值,本題第二小題是一個恒成立的問題,求參數(shù)的范圍,一般轉(zhuǎn)化最值問題來求解,本題第三問也是構造函數(shù)來解答,轉(zhuǎn)化為利用導數(shù)研究新構造的函數(shù)的單調(diào)性求出函數(shù)的最值,結(jié)合最值來判斷根的存在與否.本題對運算能力有一定的要求,解題時一定要嚴謹.考查的思想方法有分類討論,構造函數(shù)等方法思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知m∈R,函數(shù)f(x)=(x2+mx+m)ex
(1)若函數(shù)f(x)沒有零點,求實數(shù)m的取值范圍;
(2)若函數(shù)f(x)存在極大值,并記為g(m),求g(m)的表達式;
(3)當m=0時,求證:f(x)≥x2+x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m∈R,函數(shù)f(x)=(x2+mx+m)ex
(Ⅰ)若m=-1,求函數(shù)f(x)的極值;
(Ⅱ)若函數(shù)f(x)沒有零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•大連一模)已知m∈R,函數(shù)f(x)=mx2-2ex
(Ⅰ)當m=2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)有兩極值點a,b(a<b),(。┣髆的取值范圍;(ⅱ)求證:-e<f(a)<-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•大連一模)已知m∈R,函數(shù)f(x)=mx2-2ex
(Ⅰ)當m=2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)有兩個極值點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m∈R,函數(shù)f(x)=mx-
m-1
x
-lnx
,g(x)=
1
2
+lnx

(I)求g(x)的極小值;
(Ⅱ)若y=f(x)-g(x)在[1,+∞)上為單調(diào)增函數(shù),求實數(shù)m的取值范圍;
(Ⅲ)證明:
ln2
2
+
ln3
3
+
ln4
4
+…+
lnn
n
n2
2(n+1)
(n∈N*)

查看答案和解析>>

同步練習冊答案