一個四棱錐的三視圖如圖所示,那么對于這個四棱錐,下列說法中正確的是( 。 
A、最長棱的棱長為
6
B、最長棱的棱長為3
C、側(cè)面四個三角形中有且僅有一個是正三角形
D、側(cè)面四個三角形都是直角三角形
考點:由三視圖求面積、體積
專題:空間位置關系與距離
分析:由三視圖可知:該幾何體如圖所示,PA⊥底面ABCD,PA=2,底面是一個直角梯形,其中BC∥AD,AB⊥AD,BC=AB=1,AD=2.可得△PAD,△PAB,△PBC是直角三角形.
再利用三垂線定理可得△PCD是直角三角形.即可得出.
解答: 解:由三視圖可知:該幾何體如圖所示,PA⊥底面ABCD,PA=2,底面是一個直角梯形,其中BC∥AD,AB⊥AD,BC=AB=1,AD=2.
可得△PAD,△PAB,△PBC是直角三角形.
取AD的中點O,連接OC,AC.
可得四邊形ABCO是平行四邊形,∴OC=OD=OA=1,
∴CD⊥AC,
∵PA⊥底面ABCD,
∴CD⊥PC,
因此△PCD是直角三角形.
綜上可得:四棱錐的側(cè)面四個三角形都是直角三角形.
故選:D.
點評:本題考查了線面垂直的判定與性質(zhì)定理、三垂線定理的應用,考查了推理能力與計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
lgx,    x>0
x2-4,  x<0
的零點是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是計算
1
2
+
1
4
+
1
8
+
1
16
+
1
32
值的一個程序框圖,其中判斷框內(nèi)應填入的條件是(  )
A、K>5?B、K<5?
C、K>10?D、K<10?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,圓周上按順時針方向標有1,2,3,4,5五個點,一只青蛙按瞬時針方向繞圓從一個點跳到下一個點.若它停在奇數(shù)點上,則下一次只能跳一個點,若停在偶數(shù)點上,則可以連續(xù)跳2個點.該青蛙從5這點起跳,經(jīng)2009次跳后它將停在的點是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設復數(shù)z=a+bi(a,b∈R),且滿足zi=1+i(其中i為虛數(shù)單位),則a+b=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某小學教師準備購買一些簽字筆和鉛筆盒作為獎品,已知簽字筆每支5元,鉛筆盒每個6元,花費總額不能超過50元.為了便于學生選擇,購買簽字筆和鉛筆盒的個數(shù)均不能少于3個,那么該教師有
 
種不同的購買獎品方案.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

閱讀程序框圖,若輸入m=1,n=2,則輸出n=( 。
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
OA
=(-2,0),
OB
=(0,2)(O為坐標原點),點C在曲線
x=1+cosθ
y=sinθ
(θ為參數(shù))上運動,則△ABC面積的最大值為(  )
A、3-
2
B、3+
2
C、
6+
2
2
D、
3-
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sin(
3
x+
π
6
)

(Ⅰ)請用“五點法”畫出函數(shù)f(x)在一個周期上的圖象(先列表,再畫圖);
(Ⅱ)求f(x)的單調(diào)增區(qū)間;
(Ⅲ)求f(x)在[-
1
2
,
3
4
]
上的取值范圍.

查看答案和解析>>

同步練習冊答案