已知點(diǎn)A(0,-1),點(diǎn)B在圓C:x2+y2-2y=2上運(yùn)動(dòng),則直線AB斜率的取值范圍是( 。
分析:根據(jù)題意,求出圓C的圓心是(0,1)、半徑r=
3
.設(shè)直線AB方程為y=kx-1,根據(jù)直線AB與圓C相交或相切,利用點(diǎn)到直線的距離公式建立關(guān)于斜率k的不等式,解之得到斜率k的取值范圍,從而得到答案.
解答:解:圓C:x2+y2-2y=2化成標(biāo)準(zhǔn)方程,得x2+(y-1)2=3,
∴圓C是以(0,1)為圓心、半徑r=
3
的圓.
設(shè)經(jīng)過(guò)點(diǎn)A(0,-1)的直線斜率為k,可得直線AB方程為y=kx-1,
∵直線AB與圓C有公共點(diǎn)B,∴圓心C到直線AB的距離小于或等于半徑.
|-1-1|
k2+1
3
,解之得k≤-
3
3
或k≥
3
3

∴直線AB斜率k的取值范圍是(-∞,-
3
3
]∪[
3
3
,+∞)
點(diǎn)評(píng):本題給出經(jīng)過(guò)定點(diǎn)A的直線與圓C相交或相切,求直線斜率的范圍,著重考查了直線的方程、圓的方程和直線與圓的位置關(guān)系等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,-1),B點(diǎn)在直線y=-3上,M點(diǎn)滿足
MB
OA
,
MA
AB
=
MB
BA
,M點(diǎn)的軌跡為曲線C.
(Ⅰ)求C的方程;
(Ⅱ)P為C上的動(dòng)點(diǎn),l為C在P點(diǎn)處的切線,求O點(diǎn)到l距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(0,1)和橢圓
x22
+y2=1上的任意一點(diǎn)B,則|AB|最大值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(0,1),B(4,2),若點(diǎn)P在坐標(biāo)軸上,則滿足PA⊥PB的點(diǎn)P的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
i
、
j
為直角坐標(biāo)平面內(nèi)x、y軸正方向上的單位向量,若向量
p
=(x+m)
i
+y
j
q
=(x-m)
i
+y
j
,(x,y∈R,m≥2),且|
p
|-|
q
|=4

(1)求動(dòng)點(diǎn)M(x,y)的軌跡方程?并指出方程所表示的曲線;
(2)已知點(diǎn)A(0,1},設(shè)直線l:y=
1
2
x-3與點(diǎn)M的軌跡交于B、C兩點(diǎn),問(wèn)是否存在實(shí)數(shù)m,使得
AB
AC
=
9
2
?若存在,求出m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(0,1),B,C是x軸上兩點(diǎn),且|BC|=6(B在C的左側(cè)).設(shè)△ABC的外接圓的圓心為M.
(Ⅰ)已知
AB
AC
=-4
,試求直線AB的方程;
(Ⅱ)當(dāng)圓M與直線y=9相切時(shí),求圓M的方程;
(Ⅲ)設(shè)|AB|=l1,|AC|=l2,s=
l1
l2
+
l2
l1
,試求s的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案