已知函數(shù)f(x)=log|sinx|.
(1)求其定義域和值域;
(2)判斷其奇偶性;
(3)求其周期;
(4)寫出單調(diào)區(qū)間.
(1)函數(shù)定義域為{x∈R|x≠kπ,k∈Z},函數(shù)的值域為[0,+∞).
(2)f(x)為偶函數(shù)(3)T=π(4) f(x)的單調(diào)增區(qū)間是 (k∈Z),
單調(diào)減區(qū)間是 (k∈Z)
【解析】(1)由|sinx|>0得sinx≠0,∴x≠kπ(k∈Z).
即函數(shù)定義域為{x∈R|x≠kπ,k∈Z}.
又0<|sinx|≤1,∴l(xiāng)og|sinx|≥0.
∴函數(shù)的值域為[0,+∞).
(2)∵f(x)的定義域關于原點對稱,
且f(-x)=log|sin(-x)|=log|-sinx|
=log|sinx|=f(x).
∴f(x)為偶函數(shù).
(3)函數(shù)f(x)是周期函數(shù),
∵f(x+π)=log|sin(x+π)|=log|-sinx|
=log|sinx|=f(x),
∴f(x)的周期T=π.
(4)∵y=logu在(0,+∞)上是減函數(shù),
u=|sinx|在 (k∈Z)上是增函數(shù),
在 (k∈Z)上是減函數(shù).
∴f(x)在 (k∈Z)上是增函數(shù),
在 (k∈Z)上是減函數(shù).
即f(x)的單調(diào)增區(qū)間是 (k∈Z),
單調(diào)減區(qū)間是 (k∈Z).
科目:高中數(shù)學 來源: 題型:
已知函數(shù)f(x)=ax2-2x+1,g(x)=ln(x+1).
(1)求函數(shù)y=g(x)-x在[0,1]上的最小值;
(2)當a≥時,函數(shù)t(x)=f(x)+g(x)的圖像記為曲線C,曲線C在點(0,1)處的切線為l,是否存在a使l與曲線C有且僅有一個公共點?若存在,求出所有a的值;否則,說明理由.
(3)當x≥0時,g(x)≥-f(x)+恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆湖北省大治二中高二3月聯(lián)考文科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)f(x)=x3+x-16,
(1)求曲線y=f(x)在點(2,-6)處的切線的方程;
(2)直線l為曲線y=f(x)的切線,且經(jīng)過原點,求直線l的方程及切點坐標;
查看答案和解析>>
科目:高中數(shù)學 來源:2012年陜西省高二下期第一次月考理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)f(x)=x3-3x及y=f(x)上一點P(1,-2),過點P作直線l.
(1)求使直線l和y=f(x)相切且以P為切點的直線方程;
(2)求使直線l和y=f(x)相切且切點異于P的直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源:新課標高三數(shù)學導數(shù)專項訓練(河北) 題型:解答題
已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線為l:3x-y+1=0,當x=時,y=f(x)有極值.
(1)求a、b、c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:新課標高三數(shù)學導數(shù)專項訓練(河北) 題型:解答題
已知函數(shù)f(x)=x3-2x2+ax(x∈R,a∈R),在曲線y=f(x)的所有切線中,有且僅有一條切線l與直線y=x垂直.
(1)求a的值和切線l的方程;
(2)設曲線y=f(x)上任一點處的切線的傾斜角為θ,求θ的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com