15.在平行四邊形ABCD中,AC與BD交于點(diǎn)O,E是線段OD的中點(diǎn),AE的延長線與CD相交于點(diǎn)F,則$\overrightarrow{AF}$=(  )
A.$\frac{1}{4}\overrightarrow{AC}+\frac{1}{2}\overrightarrow{BD}$B.$\frac{1}{2}\overrightarrow{AC}+\frac{1}{4}\overrightarrow{BD}$C.$\frac{1}{2}\overrightarrow{AC}+\frac{2}{3}\overrightarrow{BD}$D.$\frac{2}{3}\overrightarrow{AC}+\frac{1}{3}\overrightarrow{BD}$

分析 根據(jù)兩個三角形相似對應(yīng)邊成比例,得到DF與FC之比,做FG平行BD交AC于點(diǎn)G,使用已知向量表示出要求的向量,得到結(jié)果.

解答 解:∵△DEF∽△BEA
DF:BA═DE:BE=1:3;
作FG平行BD交AC于點(diǎn)G,
∴FG:DO=2:3,CG:CO=2:3,
∴$\overrightarrow{GF}$=$\frac{1}{3}$$\overrightarrow{BD}$,
∵$\overrightarrow{AG}$=$\overrightarrow{AO}$+$\overrightarrow{OG}$=$\frac{2}{3}$$\overrightarrow{AC}$,
∴$\overrightarrow{AF}$=$\overrightarrow{AG}$+$\overrightarrow{GF}$=$\frac{2}{3}\overrightarrow{AC}+\frac{1}{3}\overrightarrow{BD}$,
故選:D

點(diǎn)評 向量是數(shù)形結(jié)合的典型例子,向量的加減運(yùn)算是用向量解決問題的基礎(chǔ),要學(xué)好運(yùn)算,才能用向量解決立體幾何問題,三角函數(shù)問題,好多問題都是以向量為載體的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x)=ax2-x-c,若不等式f(x)>0的解集為{x|-2<x<1},則函數(shù)y=f(-x)的圖象為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=$\left\{\begin{array}{l}|{lo{g}_{5}(1-x)|,(x<1)}\\{-(x-2)^{2}+2,(x>1,x≠2)}\end{array}\right.$ 且對于方程f(x)2-af(x)+a2-3=0有7個實數(shù)根,則實數(shù)a的取值范圍是$\sqrt{3}<a<2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知$\overrightarrow{a}$=(x,1),$\overrightarrow$=(4,-2).
(Ⅰ)當(dāng)$\overrightarrow{a}$∥$\overrightarrow$時,求|$\overrightarrow{a}$+$\overrightarrow$|;
(Ⅱ)若$\overrightarrow{a}$與$\overrightarrow$所成角為鈍角,求x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={x∈N|x≤1},B={x|-1≤x≤2},則A∩B=( 。
A.{0,1}B.{-1,0,1}C.[-1,1]D.{1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}是首項為1的單調(diào)遞增的等比數(shù)列,且滿足a3,$\frac{5}{3}{a_4},{a_5}$成等差數(shù)列.
(1)求{an}的通項公式;
(2)若bn=log3(an•an+1)(n∈N*),求數(shù)列{an•bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知空間向量$\overrightarrow a$=(0,1,1),$\overrightarrow b$=(-1,0,1),則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={0,1},B={x|-1≤x≤2},則A∩B=( 。
A.{0,1}B.{-1,0,1}C.[-1,1]D.{1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)=$\left\{\begin{array}{l}{sin\frac{π}{2}x,x≤0}\\{f(x-2)+\frac{3}{2},x>0}\end{array}\right.$,則f($\frac{5}{3}$)的值為1.

查看答案和解析>>

同步練習(xí)冊答案