精英家教網 > 高中數學 > 題目詳情
若函數f(x),g(x)分別是R上的奇函數、偶函數,且滿足f(x)-g(x)=ex,則有( )
A.f(2)<f(3)<g(0)
B.g(0)<f(3)<f(2)
C.f(2)<g(0)<f(3)
D.g(0)<f(2)<f(3)
【答案】分析:因為函數f(x),g(x)分別是R上的奇函數、偶函數,所以f(-x)=-f(x),g(-x)=g(x).
用-x代換x得:f(-x)-g(-x)=-f(x)-g(x)=e-x,又由f(x)-g(x)=ex聯立方程組,可求出f(x),g(x)的解析式進而得到答案.
解答:解:用-x代換x得:f(-x)-g(-x)=e-x,即f(x)+g(x)=-e-x,
又∵f(x)-g(x)=ex
∴解得:,,
故f(x)單調遞增,又f(0)=0,g(0)=-1,有g(0)<f(2)<f(3)
故選D.
點評:本題考查函數的奇偶性性質的應用.另外還考查了指數函數的單調性.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=ax2+ax和g(x)=x-a.其中a∈R且a≠0.
(Ⅰ)若函數f(x)與g(x)的圖象的一個公共點恰好在x軸上,求a的值;
(Ⅱ)若函數f(x)與g(x)圖象相交于不同的兩點A、B,O為坐標原點,試問:△OAB的面積S有沒有最值?如果有,求出最值及所對應的a的值;如果沒有,請說明理由.
(Ⅲ)若p和q是方程f(x)-g(x)=0的兩根,且滿足0<p<q<
1a
,證明:當x∈(0,p)時,g(x)<f(x)<p-a.

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)與g(x)=2-x互為反函數,則f(x2)的單調遞增區(qū)間是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•福州模擬)已知函數f(x)=-x2+2lnx.
(Ⅰ)求函數f(x)的最大值;
(Ⅱ)若函數f(x)與g(x)=x+
a
x
有相同極值點,
(i)求實數a的值;
(ii)若對于“x1,x2∈[
1
e
,3],不等式
f(x1)-g(x2)
k-1
≤1恒成立,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=ax2+ax和g(x)=x-a.其中a∈R且a≠0.
(1)若函數f(x)與g(x)的圖象的一個公共點恰好在x軸上,求a的值;
(2)若函數f(x)與g(x)圖象相交于不同的兩點A、B,O為坐標原點,試問:△OAB的面積S有沒有最值?如果有,求出最值及所對應的a的值;如果沒有,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x),g(x)分別為R上的奇函數、偶函數,且滿足f(x)-g(x)=πx,請將f(3),f(4),g(0)按從大到小的順序排列
 

查看答案和解析>>

同步練習冊答案