在△ABC中,已知BC=8,AC=5,三角形面積為12,則cos2C=   
【答案】分析:先通過(guò)BC=8,AC=5,三角形面積為12求出sinC的值,再通過(guò)余弦函數(shù)的二倍角公式求出答案.
解答:解:∵已知BC=8,AC=5,三角形面積為12,
•BC•ACsinC=5
∴sinC=
∴cos2C=1-2sin2C=1-2×=
故答案為:
點(diǎn)評(píng):本題主要考查通過(guò)正弦求三角形面積及倍角公式的應(yīng)用.屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知b=50
3
,c=150,B=30°,則邊長(zhǎng)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在△ABC中,已知B=45°,D是BC上一點(diǎn),AD=5,AC=7,DC=3,求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知b=6,c=5
3
,A=30°
,則a=
21
21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知B=60°,C=45°,c=3
2
,則b=
3
3
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,已知B=
π
3
,AC=4
3
,D為BC邊上一點(diǎn).
(I)若AD=2,S△DAC=2
3
,求DC的長(zhǎng);
(Ⅱ)若AB=AD,試求△ADC的周長(zhǎng)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案