已知Sn,Tn分別是等差數(shù)列{an},{bn}的前n項(xiàng)和,且=,(n∈N+)則+=   
【答案】分析:由等差數(shù)列的性質(zhì),知+==,由此能夠求出結(jié)果.
解答:解:∵Sn,Tn分別是等差數(shù)列{an},{bn}的前n項(xiàng)和,
=,(n∈N+),
+=
===
故答案為:
點(diǎn)評(píng):本題考查等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn和Tn分別是兩個(gè)等差數(shù)列的前n項(xiàng)和,已知
Sn
Tn
=
7n+2
n+3
,對(duì)一切自然數(shù)n∈N*成立,則
a5
b5
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•江蘇一模)已知Sn,Tn分別是等差數(shù)列{an},{bn}的前n項(xiàng)和,且
Sn
Tn
=
2n+1
4n-2
,(n∈N+)則
a10
b3+b18
+
a11
b6+b15
=
41
78
41
78

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•焦作一模)已知Sn,Tn分別是首項(xiàng)為1的等差數(shù)列{an}和首項(xiàng)為1的等比數(shù)列{bn}的前n項(xiàng)和,且滿足4S3=S6,9T3=8T6,則
1
Snbn
的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年安徽省馬鞍山二中高一(下)期中數(shù)學(xué)試卷(解析版) 題型:填空題

已知Sn和Tn分別是兩個(gè)等差數(shù)列的前n項(xiàng)和,已知,對(duì)一切自然數(shù)n∈N*成立,則=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年安徽省淮南市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:填空題

已知Sn,Tn分別是等差數(shù)列{an},{bn}的前n項(xiàng)和,且=,(n∈N+)則+=   

查看答案和解析>>

同步練習(xí)冊(cè)答案