若等比數(shù)列{an}的前n項(xiàng)和為Sn=32n-1+a,則常數(shù)a的值等于( )
A.-
B.-1
C.
D.3
【答案】分析:因?yàn)镾n=32n-1+a,所以當(dāng)n大于等于2時(shí),根據(jù)an=Sn-Sn-1,得到數(shù)列{an}的通項(xiàng)公式,又把n=1代入Sn=32n-1+a中求出a1等于S1等于3+a,根據(jù)此數(shù)列為等比數(shù)列,得到a1也滿(mǎn)足數(shù)列的通項(xiàng)公式,即n=1代入數(shù)列{an}的通項(xiàng)公式表示出a1,讓其值等于3+a,列出關(guān)于a的方程,求出方程的解即可得到a的值.
解答:解:由Sn=32n-1+a知,
當(dāng)n≥2時(shí),an=Sn-Sn-1=32n-1-32n-3=8×32n-3,
當(dāng)n=1時(shí),a1=S1=3+a.
∵數(shù)列{an}是等比數(shù)列,
∴3+a=8×32×1-3=
∴a=-
故選A
點(diǎn)評(píng):此題考查學(xué)生靈活運(yùn)用等比數(shù)列的性質(zhì)化簡(jiǎn)求值,掌握等比數(shù)列{an}的通項(xiàng)公式的求法an=Sn-Sn-1(n≥2),是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等比數(shù)列{an}的前n項(xiàng)和Sn滿(mǎn)足:an+1=a1Sn+1(n∈N*),則a1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等比數(shù)列{an}的前n項(xiàng)和S n=3×2n+a(a為常數(shù)),則
a
2
1
+
a
2
2
+
a
2
3
+…+
a
2
n
=
3(4n-1)
3(4n-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等比數(shù)列{an}的前n項(xiàng)和為Sn,a2=6,S3=21,則公比q=
2
5
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)有數(shù)列{an},若存在M>0,使得對(duì)一切自然數(shù)n,都有|an|<M成立,則稱(chēng)數(shù)列{an}有界,下列結(jié)論中:
①數(shù)列{an}中,an=
1n
,則數(shù)列{an}有界;
②等差數(shù)列一定不會(huì)有界;
③若等比數(shù)列{an}的公比滿(mǎn)足0<q<1,則{an}有界;
④等比數(shù)列{an}的公比滿(mǎn)足0<q<1,前n項(xiàng)和記為Sn,則{Sn}有界.
其中一定正確的結(jié)論有
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等比數(shù)列{an}的前項(xiàng)n和為Sn,且
S4
S2
=5,則
S8
S4
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案