6、設(shè)f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,則f2005(x)=( 。
分析:通過計算前幾項,進行歸納分析,當計算到f4(x)時發(fā)現(xiàn)f4(x)=f0(x)出現(xiàn)了循環(huán),所以可看成以4為一個循環(huán)周期,那么f2005(x)=f1(x)=cosx.
解答:解:f0(x)=sinx,f1(x)=f0′(x)=cosx,f2(x)=f1′(x)=-sinx,
f3(x)=f2′(x)=-cosx,f4(x)=f3′(x)=sinx,循環(huán)了
則f2005(x)=f1(x)=cosx,
故選C.
點評:本題考查了計算型歸納推理,通過計算歸納一般規(guī)律.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

6、設(shè)f0(x)=sin x,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,則f2010(x)=
-sinx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f0(x)=sin(x),f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,則f2013(x)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)f0(x)=sin(x),f1(x)=f0'(x),f2(x)=f1'(x),…,fn+1(x)=fn'(x),n∈N,則f2013(x)=(  )
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)f0(x)=sin x,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,則f2010(x)=______.

查看答案和解析>>

科目:高中數(shù)學 來源:陜西省月考題 題型:填空題

設(shè)f0(x)=sin x,f1(x)=f0′(x),f2(x)=f1′(x),…,f n+1(x)=fn′(x),n∈N,則
f2010(x)=(    )

查看答案和解析>>

同步練習冊答案