設(shè)數(shù)列{an}為等差數(shù)列,其前n項(xiàng)和為Sn,S2=8,S4=32,數(shù)列{bn}為等比數(shù)列,且a1=b1,b2(a2-a1)=b1
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=
an
bn
,求數(shù)列{cn}的前n項(xiàng)和Tn
(Ⅰ)數(shù)列{an}的公差為d,數(shù)列{bn}的公比為q,
由已知得,
2a1+d=8
4a1+6d=32

解得a1=2,d=4
故{an}的通項(xiàng)公式為an=4n-2…(3分)
因而有,b1qd=b1,d=4,
q=
1
4

bn=b1qn-1=2×
1
4n-1
=
2
4n-1

即{bn}的通項(xiàng)公式為bn=
2
4n-1
…(6分)
(Ⅱ)∵cn=
an
bn
=
4n-2
2
4n-1
=(2n-1)•4n-1

∴Tn=c1+c2+…+cn=1+3×4+5×42+…+(2n-1)4n-1,
4Tn=1×4+3×42+5×43+…+(2n-3)4n-1+(2n-1)4n,…(8分)
兩式相減,得3Tn=-1-2(4+42+43+…+4n-1)+(2n-1)4n
=
1
3
[(6n-5)4n+5]
,
所以,Tn=
1
9
[(6n-5)4n+5]
.    …(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a1=1,點(diǎn)(an,an+1)在函數(shù)f(x)=x2+4x+2的圖象上,其中n=1,2,3,4,…
(1)證明:數(shù)列{lg(an+2)}是等比數(shù)列;
(2)設(shè)數(shù)列{an+2}的前n項(xiàng)積為Tn,求Tn及數(shù)列{an}的通項(xiàng)公式;
(3)已知bn
1
an+1
1
an+3
的等差中項(xiàng),數(shù)列{bn}的前n項(xiàng)和為Sn,求證:
3
8
Sn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對(duì)任意n∈N*,Sn是an2和an的等差中項(xiàng).
(Ⅰ)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明
1
S1
+
1
S2
+…+
1
Sn
<2;
(Ⅲ)設(shè)集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對(duì)滿足n>m的一切正整數(shù)n,不等式Sn-1005>
a
2
n
2
恒成立,求這樣的正整數(shù)m共有多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx滿足條件:①f(0)=f(1);  ②f(x)的最小值為-
1
8

(1)求函數(shù)f(x)的解析式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)積為Tn,且Tn=(
4
5
f(n),求數(shù)列{an}的通項(xiàng)公式;
(3)在(2)的條件下,若5f(an)是bn與an的等差中項(xiàng),試問(wèn)數(shù)列{bn}中第幾項(xiàng)的值最?求出這個(gè)最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對(duì)任意n∈N*,Sn
1
2
an2和an的等差中項(xiàng)
(Ⅰ)證明:數(shù)列為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明:
1
2
1
S1
+
1
S2
+…+
1
Sn
<1
;
(Ⅲ)設(shè)集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對(duì)滿足n>m的一切正整數(shù)n,不等式2Sn-4200>
a
2
n
2
恒成立,試問(wèn):這樣的正整數(shù)m共有多少個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是各項(xiàng)都為正數(shù)的等比數(shù)列,且a1=b1=1,b1+b2=a2,b3是a1與a4的等差中項(xiàng).
(I)求數(shù)列{an},{bn}的通項(xiàng)公式;
(II)求數(shù)列{
anbn
}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案