對(duì)于空間中的三個(gè)向量
a
,
b
,2
a
-
b
.它們一定是( 。
分析:由于2
a
-
b
可用向量
a
,
b
線性表示,即可判斷出空間中的三個(gè)向量
a
,
b
,2
a
-
b
是否是共面向量.
解答:解:∵2
a
-
b
可用向量
a
,
b
線性表示,因此對(duì)于空間中的三個(gè)向量
a
b
,2
a
-
b
.它們一定是共面向量.
故選A.
點(diǎn)評(píng):正確理解共面向量定理是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在下列命題中:
①若向量
a
,
b
共線,則向量
a
,
b
所在的直線平行;
②若向量
a
,
b
所在的直線為異面直線,則向量
a
,
b
一定不共面;
③若三個(gè)向量
a
,
b
c
兩兩共面,則向量
a
,
b
,
c
共面;
④已知是空間的三個(gè)向量
a
,
b
,
c
,則對(duì)于空間的任意一個(gè)向量
p
總存在實(shí)數(shù)x,y,z使得
p
=x
a
+y
b
+z
c
;
其中正確的命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對(duì)于空間中的三個(gè)向量
a
,
b
,2
a
-
b
.它們一定是(  )
A.共面向量B.共線向量C.不共面向量D.以上均不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《3.1 空間向量及其運(yùn)算》2013年同步練習(xí)4(解析版) 題型:選擇題

對(duì)于空間中的三個(gè)向量,,2-.它們一定是( )
A.共面向量
B.共線向量
C.不共面向量
D.以上均不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于空間中的三個(gè)向量Equation.3、Equation.3、2Equation.3-Equation.3,它們一定是(  )

A.共面向量

B.共線向量

C.不共面向量

D.既不共線又不共面向量

查看答案和解析>>

同步練習(xí)冊(cè)答案