設橢圓的焦點分別為,直線軸于點,且

(1)試求橢圓的方程;
(2)過分別作互相垂直的兩直線與橢圓分別交于D、E、M、N四點(如圖所示),試求四邊形面積的最大值和最小值.
(1)由題意,
 的中點    
 
即:橢圓方程為…………………(4分)
(2)當直線軸垂直時,,
此時,四邊形的面積
同理當軸垂直時,也有四邊形的面積
當直線,均與軸不垂直時,設:,代入消去得:

所以,,
所以,
所以四邊形的面積


因為,且S是以u為自變量的增函數(shù),
所以
綜上可知,.故四邊形面積的最大值為4,最小值為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分16分)
已知F是橢圓=1的右焦點,點P是橢圓上的動點,點Q是圓上的動點.
(1)試判斷以PF為直徑的圓與圓的位置關系;
(2)在x軸上能否找到一定點M,使得=e (e為橢圓的離心率)?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,正六邊形的兩個頂點為橢圓的兩個焦點,其余四個頂點在
橢圓上,則該橢圓的離心率的值是______

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
橢圓的離心率為分別是左、右焦點,過F1的直線與圓相切,且與橢圓E交于A、B兩點。
(1)當時,求橢圓E的方程;
(2)求弦AB中點的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為,且過,設點.
(1)求該橢圓的標準方程;
(2)若是橢圓上的動點,求線段中點的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓的焦點分別為,且過點
(1)求橢圓的標準方程;
(2)設為橢圓內(nèi)一點,直線交橢圓兩點,且為線段的中點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分15分)已知A(1,1)是橢圓)上一點,F1­,F(xiàn)2
 
是橢圓上的兩焦點,且滿足 .
(I)求橢圓方程;
(Ⅱ)設C,D是橢圓上任兩點,且直線AC,AD的斜率分別為  ,若存在常數(shù) 使/,求直線CD的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在圓上任取一點,過點軸的垂線段,為垂足.當點在圓上運動時,線段的中點形成軌跡
(1)求軌跡的方程;
(2)若直線與曲線交于兩點,為曲線上一動點,求面積的最大值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)設、分別是橢圓,的左、右焦點,是該橢圓上一個動點,且。
、求橢圓的方程;
、求出以點為中點的弦所在的直線方程。

查看答案和解析>>

同步練習冊答案