設橢圓
的焦點分別為
,直線
交
軸于點
,且
.
(1)試求橢圓的方程;
(2)過
分別作互相垂直的兩直線與橢圓分別交于D、E、M、N四點(如圖所示),試求四邊形
面積的最大值和最小值.
(1)由題意,
為
的中點
即:橢圓方程為
…………………(4分)
(2)當直線
與
軸垂直時,
,
此時
,四邊形
的面積
.
同理當
與
軸垂直時,也有四邊形
的面積
.
當直線
,
均與
軸不垂直時,設
:
,代入消去
得:
設
所以,
,
所以,
,
所以四邊形的面積
令
因為
當
,且S是以u為自變量的增函數(shù),
所以
.
綜上可知,
.故四
邊形
面積的最大值為4,最小值為
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分16分)
已知F是橢圓
:
=1的右焦點,點P是橢圓
上的動點,點Q是圓
:
+
=
上的動點.
(1)試判斷以PF為直徑的圓與圓
的位置關系;
(2)在x軸上能否找到一定點M,使得
=e (e為橢圓的離心率)?若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖,正六邊形
的兩個頂點
為橢圓的兩個焦點,其余四個頂點在
橢圓上,則該橢圓的離心率的值是______
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)
橢圓
的離心率為
分別是左、右焦點,過F
1的直線與圓
相切,且與橢圓E交于A、B兩點。
(1)當
時,求橢圓E的方程;
(2)求弦AB中點的軌跡方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為
,且過
,設點
.
(1)求該橢圓的標準方程;
(2)若
是橢圓上的動點,求線段
中點
的軌跡方程;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)
已知橢圓
的焦點分別為
,且過點
.
(1)求橢圓
的標準方程;
(2)設
為橢圓
內(nèi)一點,直線
交橢圓
于
兩點,且
為線段
的中點,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分15分)已知A(1,1)是橢圓
(
)上一點,F
1,F(xiàn)
2 是橢圓上的兩焦點,且滿足
.
(I)求橢圓方程;
(Ⅱ)設C,D是橢圓上任兩點,且直線AC,AD的斜率分別為
,若存在常數(shù)
使
/,求直線CD的斜率.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在圓
上任取一點
,過點
作
軸的垂線段
,
為垂足.當點
在圓上運動時,線段
的中點
形成軌跡
.
(1)求軌跡
的方程;
(2)若直線
與曲線
交于
兩點,
為曲線
上一動點,求
面積的最大值
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)設
、
分別是橢圓
,
的左、右焦點,
是該橢圓上一個動點,且
,
。
、求橢圓
的方程;
、求出以點
為中點的弦所在的直線方程。
查看答案和解析>>