若橢圓C:
x2
m2
+
y2
n2
=1
過拋物線y2=8x的焦點(diǎn),且與雙曲線x2-y2=-1有相同的焦點(diǎn),則該橢圓的方程是( 。
分析:確定拋物線y2=8x的焦點(diǎn)坐標(biāo),雙曲線x2-y2=-1的焦點(diǎn)坐標(biāo),可得橢圓中相應(yīng)的參數(shù),即可求得橢圓的方程.
解答:解:拋物線y2=8x的焦點(diǎn)坐標(biāo)為(2,0),雙曲線x2-y2=-1的焦點(diǎn)坐標(biāo)為(0,±
2
),
∵橢圓C:
x2
m2
+
y2
n2
=1
過拋物線y2=8x的焦點(diǎn),且與雙曲線x2-y2=-1有相同的焦點(diǎn)
∴m=2,n2-m2=2
∴n2=m2+2=6
∴該橢圓的方程是
y2
6
+
x2
4
=1

故選D.
點(diǎn)評:本題考查圓錐曲線的共同特征,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知m>1,直線l:x-my-
m2
2
=0,橢圓C:
x2
m2
+y2=1,F(xiàn)1、F2分別為橢圓C的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線l過右焦點(diǎn)F2時(shí),求直線l的方程;
(Ⅱ)設(shè)直線l與橢圓C交于A、B兩點(diǎn),△AF1F2,△BF1F2的重心分別為G、H.若原點(diǎn)O在以線段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
m2
+
y2
n2
=1(0<m<n)
的離心率為
3
2
,且經(jīng)過點(diǎn)P(
3
2
,1)

(1)求橢圓C的方程;
(2)設(shè)直線l:y=kx+t(k≠0)交橢圓C于A、B兩點(diǎn),D為AB的中點(diǎn),kOD為直線OD的斜率,求證:k•kOD為定值;
(3)在(2)條件下,當(dāng)t=1時(shí),若
OA
OB
的夾角為銳角,試求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
m2
+y2=1
的左、右焦點(diǎn)分別為F1、F2,離心率為
2
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:y=x+t(t>0)與橢圓C交于A,B兩點(diǎn).若原點(diǎn)O在以線段AB為直徑的圓內(nèi),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•成都模擬)已知m>1,直線l:x-my-
m2
2
=0,橢圓C:
x2
m2
+y2=1,F(xiàn)1、F2分別為橢圓C的左、右焦點(diǎn).
(I)當(dāng)直線l過右焦點(diǎn)F2時(shí),求直線l的方程;
(II)當(dāng)直線l與橢圓C相離、相交時(shí),求m的取值范圍;
(III)設(shè)直線l與橢圓C交于A、B兩點(diǎn),△AF1F2,△BF1F2的重心分別為G、H.若原點(diǎn)O在以線段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案