已知數(shù)列{an}的前n項和Sn=n2-9n+1,若它的第k項滿足5<ak<8,則k=
 
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:當n≥2時,an=Sn-Sn-1,解出即可.
解答: 解:當n≥2時,an=Sn-Sn-1=n2-9n+1-[(n-1)2-9(n-1)+1]=2n-10,
∵5<ak<8,
∴5<2k-10<8,
解得k=8.
故答案為:8.
點評:本題考查了遞推式的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若m∈N*,定義一種運算*,滿足(m+1)*1=2(m*1),1*1=2,則8*1=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設m,n∈N*,f(x)=(1+x)m+(1+x)n的展開式中,x的系數(shù)為19.則f(x)展開式中x2的系數(shù)的最大、小值分別為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖的程序框圖,若輸出的n=5,則輸入整數(shù)p的最小值是( 。
A、6B、7C、8D、15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在一塊傾斜放置的矩形木塊上釘著一個形如“等腰三角形”的五行鐵釘,釘子之間留有空隙作為通道,自上而下第1行2個鐵釘之間有1個空隙,第2行3個鐵釘之間有2個空隙…第5行6個鐵釘之間有5個空隙(如圖).某人將一個玻璃球從第1行的空隙向下滾動,玻璃球碰到第2行居中的鐵釘后以相等的概率滾入第2行的左空隙或右空隙,以后玻璃球按類似方式繼續(xù)往下滾動,落入第5行的某一個空隙后,掉入木板下方相應的球槽.玻璃球落入不同球槽得到的分數(shù)ξ如圖所示.
(Ⅰ)求Eξ;
(Ⅱ)若此人進行4次相同試驗,求至少3次獲得4分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知任意非零實數(shù)x,y滿足3x2+4xy≤λ(x2+y2)恒成立,則實數(shù)λ的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)的反函數(shù)為f-1(x)=log3x,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}為等差數(shù)列,且a2=3,a6=5,S7=( 。
A、42B、28C、24D、34

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設U=R,M={x|x2-x≤0},函數(shù)f(x)=
1
x-1
的定義域為N,則M∩(∁UN)=(  )
A、[0,1)B、[0,1]
C、(0,1)D、{1}

查看答案和解析>>

同步練習冊答案