分析 求出函數(shù)的導(dǎo)函數(shù),求得導(dǎo)函數(shù)的零點(diǎn),然后對(duì)a分類(lèi)分析導(dǎo)函數(shù)在各區(qū)間段內(nèi)的符號(hào),得到原函數(shù)的單調(diào)區(qū)間.
解答 解:$g'(x)=\frac{{2a{x^2}-(2a+1)x+1}}{x}$=$\frac{(2ax-1)(x-1)}{x}$.
∵函數(shù)g(x)的定義域?yàn)椋?,+∞),
∴當(dāng)a=0時(shí),$g'(x)=-\frac{x-1}{x}$,
由g'(x)>0,得0<x<1,由g'(x)<0,得x>1.
即函數(shù)g(x)在(0,1)上單調(diào)遞增,在(1,+∞)單調(diào)遞減;
當(dāng)a>0時(shí),令g'(x)=0,得x=1或$x=\frac{1}{2a}$.
若$\frac{1}{2a}<1$,即$a>\frac{1}{2}$時(shí),
由g'(x)>0,得x>1或$0<x<\frac{1}{2a}$,由g'(x)<0,得$\frac{1}{2a}<x<1$.
即函數(shù)g(x)在$(0,\frac{1}{2a})$,(1,+∞)上單調(diào)遞增,在$(\frac{1}{2a},1)$單調(diào)遞減;
若$\frac{1}{2a}>1$,即$0<a<\frac{1}{2}$時(shí),
由g'(x)>0,得$x>\frac{1}{2a}$或0<x<1,由g'(x)<0,得$1<x<\frac{1}{2a}$.
即函數(shù)g(x)在(0,1),$(\frac{1}{2a},+∞)$上單調(diào)遞增,在$(1,\frac{1}{2a})$單調(diào)遞減;
若$\frac{1}{2a}=1$,即$a=\frac{1}{2}$時(shí),在(0,+∞)上恒有g(shù)'(x)≥0.
即函數(shù)g(x)在(0,+∞)上單調(diào)遞增.
綜上所述:
當(dāng)a=0時(shí),函數(shù)g(x)在(0,1)上單調(diào)遞增,在(1,+∞)單調(diào)遞減;
當(dāng)$0<a<\frac{1}{2}$時(shí),函數(shù)g(x)在(0,1)上單調(diào)遞增,
在$(1,\frac{1}{2a})$單調(diào)遞減;在$(\frac{1}{2a},+∞)$上單調(diào)遞增;
當(dāng)$a=\frac{1}{2}$時(shí),函數(shù)g(x)在(0,+∞)上單調(diào)遞增,
當(dāng)$a>\frac{1}{2}$時(shí),函數(shù)g(x)在$(0,\frac{1}{2a})$上單調(diào)遞增,
在$(\frac{1}{2a},1)$單調(diào)遞減;在(1,+∞)上單調(diào)遞增.
點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查分類(lèi)討論的數(shù)學(xué)思想方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12-8$\sqrt{2}$ | B. | 3-2$\sqrt{2}$ | C. | 8-5$\sqrt{2}$ | D. | 6-4$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{10}$ | B. | $-\frac{{\sqrt{2}}}{10}$ | C. | $\frac{{7\sqrt{2}}}{10}$ | D. | $-\frac{{7\sqrt{2}}}{10}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com