如圖所示,空間四邊形ABCD中,AB=CD,AB⊥CD,E、F分別為BC、AD的中點,則EF和AB所成的角為             

試題分析:根據(jù)題意,由于空間四邊形ABCD中,AB=CD,AB⊥CD,E、F分別為BC、AD的中點,那么可知取AC的中點G,則連接EG,FG,則直線EG,FG所成的夾角即為所求解的角,利用中位線性質(zhì)可知長度,那么結(jié)合等腰三角形,以及直角三角形可知角度為,故答案為。
點評:本題主要考查了異面直線及其所成的角,解題的關(guān)鍵就是將兩異面直線平移到一起,屬于基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,面,的中點,為面內(nèi)的動點,且到直線的距離為,則的最大值(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在長方形ABCD中,AB=,BC=1,E為線段DC上一動點,現(xiàn)將AED沿AE折起,使點D在面ABC上的射影K在直線AE上,當(dāng)ED運動到C,則K所形成軌跡的長度為   (   )
         
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

a,b,c表示三條不重合的直線,M表示平面,給出下列四個命題:①若a∥M,b∥M,則a∥b;②若bM,a∥b,則a∥M;③若a⊥c,b⊥c,則a∥b;④若a⊥M,b⊥M,則a∥b.其中正確命題的個數(shù)有
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐的底面為一直角梯形,其中,底面,的中點.

(Ⅰ)求證://平面;
(Ⅱ)若平面,求平面與平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在棱長為1的正方體ABCD—A1B1C1D1中,M和N分別為A1B1和BB1的中點,那么直線AM與CN所成角的余弦值是                       (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐的底面是正方形,⊥底面,點在棱上.

(1)求證:平面⊥平面
(2)當(dāng)的中點時,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知六棱錐的底面是正六邊形,,則直線所成的角為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G為AD中點.

(1)請在線段CE上找到點F的位置,使得恰有直線BF∥平面ACD,并證明這一事實;
(2)求平面BCE與平面ACD所成銳二面角的大。
(3)求點G到平面BCE的距離.

查看答案和解析>>

同步練習(xí)冊答案