精英家教網 > 高中數學 > 題目詳情

已知橢圓x2+(m+3)y2m(m>0)的離心率e,求m的值及橢圓的長軸和短軸的長及頂點坐標.

解:橢圓方程可化為=1.
因為m>0,所以m>.
a2m,b2,c.
e,解得m=1.
所以a=1,b,橢圓的標準方程為x2=1.
所以橢圓的長軸長為2,短軸長為1,
四個頂點的坐標分別為
A1(-1,0),A2(1,0),B1(0,-),B2(0,)

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知雙曲線C:2x2-y2=2與點P(1,2).求過點P(1,2)的直線l的斜率k的取值范圍,使l與C只有一個交點;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(18分)如圖,直線與拋物線交于兩點,與軸相交于點,且.
(1)求證:點的坐標為;
(2)求證:;
(3)求的面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

.(本題滿分14分)已知橢圓的中心為坐標原點O,焦點在X軸上,橢圓短半軸長為1,動點  在直線上。
(1)求橢圓的標準方程
(2)求以線段OM為直徑且被直線截得的弦長為2的圓的方程;
(3)設F是橢圓的右焦點,過點F作直線OM的垂線與以線段OM為直徑的圓交于點N,求證:線段ON的長為定值,并求出這個定值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

 (本小題滿分12分)
橢圓的離心率,過右焦點的直線與橢圓相交
A、B兩點,當直線的斜率為1時,坐標原點到直線的距離為
⑴求橢圓C的方程;
⑵橢圓C上是否存在點,使得當直線繞點轉到某一位置時,有
立?若存在,求出所有滿足條件的點的坐標及對應的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知某橢圓的焦點F1(-4,0),F(xiàn)2(4,0),過點F2并垂直于x軸的直線與橢圓的一個交點為B,且|F1B|+|F2B|=10,橢圓上不同兩點A(x1,y1),C(x2,y2)滿足條件|F2A|,|F2B|,|F2C|成等差數列.(1)求該橢圓的方程;(2)求弦AC中點的橫坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分14分)已知橢圓C:=1(a>b>0)的離心率為,短軸一
個端點到右焦點的距離為3.
(1)求橢圓C的方程;
(2)過橢圓C上的動點P引圓O:的兩條切線PA、PB,A、B分別為切點,試探究橢圓C上是否存在點P,由點P向圓O所引的兩條切線互相垂直?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

若直線的參數方程為,則直線的斜率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知斜率為1的直線 過橢圓的右焦點,交橢圓于兩點,求

查看答案和解析>>

同步練習冊答案