(2009安徽卷理)(本小題滿分13分)
如圖,四棱錐F-ABCD的底面ABCD是菱形,其對角線AC=2,BD=,AE、CF都與平面ABCD垂直,AE=1,CF=2.
(I)求二面角B-AF-D的大;
(II)求四棱錐E-ABCD與四棱錐F-ABCD公共部分的體積.
解析:本小題主要考查直線與直線、直線與平面、平面與平面的位置關(guān)系、相交平面所成二面角以及空間幾何體的體積計算等知識,考查空間想象能力和推理論證能力、利用綜合法或向量法解決立體幾何問題的能力。本小題滿分13分。
解:(I)(綜合法)連接AC、BD交于菱形的中心O,過O作OGAF,
G為垂足。連接BG、DG。由BDAC,BDCF得BD平面ACF,故BDAF。
于是AF平面BGD,所以BGAF,DGAF,BGD為二面角B-AF-D 的平面角。
由, ,得,
由,得
(向量法)以A為坐標(biāo)原點(diǎn),、、方向分別為x軸、y軸、z軸的正方向建立空間直角坐標(biāo)系(如圖)
設(shè)平面ABF的法向量,則由得
令,得,
同理,可求得平面ADF的法向量。
由知,平面ABF與平面ADF垂直,
二面角B-AF-D的大小等于。
(II)連EB、EC、ED,設(shè)直線AF與直線CE相交于點(diǎn)H,則四棱錐E-ABCD與四棱錐F-ABCD的公共部分為四棱錐H-ABCD。
過H作HP⊥平面ABCD,P為垂足。
因?yàn)镋A⊥平面ABCD,F(xiàn)C⊥平面ABCD,,所以平面ACFE⊥平面ABCD,從而
由得。
又因?yàn)?IMG height=41 src='http://thumb.zyjl.cn/pic1/img/20090619/20090619182429028.gif' width=179>
故四棱錐H-ABCD的體積
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(2009安徽卷理)下列選項(xiàng)中,p是q的必要不充分條件的是
(A)p:>b+d , q:>b且c>d
(B)p:a>1,b>1 q:的圖像不過第二象限
(C)p: x=1, q:
(D)p:a>1, q: 在上為增函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009安徽卷理)(本小題滿分12分)
在ABC中,, sinB=.
(I)求sinA的值;
(II)設(shè)AC=,求ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com