【題目】在正方體中,點,分別為的中點,則下列說法正確的是______.

平面平面

平面平面

【答案】

【解析】

①②③錯誤,采用反證,假設正確,再根據線面垂直,線面平行的性質推出矛盾;④先證明,再對稱考慮有,最后通過線面垂直的判定推出結論.

①連接,,有,,故平面.假設平面,則有,而,故平面,于是,矛盾,所以此命題錯誤.

②設交于,則,,故四邊形是平行四邊形,所以有.假設平面,因在平面上,故也在平面上,而直線直線和為異面直線,矛盾,所以此命題錯誤.

③假設平面,則必有,而又有,故平面.于是有,矛盾,所以此命題錯誤.

④連接,則有,又因為,所以有,故.的中點,由正方形性質,,三點共線.所以平面即是平面,同理設的中點為,則,于是有平面,故平面.

故本題的答案為:④

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正四棱錐中,,,分別是,的中點,動點在線段上運動時,下列四個結論中恒成立的為( .

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】潮汐是發(fā)生在沿海地區(qū)的一種自然現(xiàn)象,其形成是海水受日月的引力.潮是指海水在一定的時候發(fā)生漲落的現(xiàn)象.一般來說,早潮叫潮,晚潮叫汐.某觀測站通過長時間的觀測,其發(fā)現(xiàn)潮汐的漲落規(guī)律和函數(shù)圖象基本一致且周期為,其中為時間,為水深.時,海水上漲至最高5.

1)作出函數(shù)內的圖象,并求出潮汐漲落的頻率和初相;

2)求海水水深持續(xù)加大的時間區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】表示一位騎自行車和一位騎摩托車的旅行者在相距80 km的甲、乙兩城間從甲城到乙城所行駛的路程與時間之間的函數(shù)關系,有人根據函數(shù)圖象,提出了關于這兩個旅行者的如下信息:

①騎自行車者比騎摩托車者早出發(fā)3 h,晚到1 h;

②騎自行車者是變速運動,騎摩托車者是勻速運動;

③騎摩托車者在出發(fā)1.5 h后追上了騎自行車者;

④騎摩托車者在出發(fā)1.5 h后與騎自行車者速度一樣.

其中,正確信息的序號是________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若曲線與曲線在它們的某個交點處具有公共切線,求的值;

(Ⅱ)若存在實數(shù)使不等式的解集為,求實數(shù)的取值范圍

(Ⅲ)若方程有三個不同的解,且它們可以構成等差數(shù)列,寫出實數(shù)的值(只需寫出結果).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形,平面,分別是線段的中點,.

(1)證明:平面;

(2)設點是線段的中點,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知、分別為雙曲線的左右焦點,左右頂點為、,是雙曲線上任意一點,則分別以線段、為直徑的兩圓的位置關系為( )

A. 相交B. 相切C. 相離D. 以上情況均有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直角的三邊長,滿足.

Ⅰ)在之間插入個數(shù),使這個數(shù)構成以為首項的等差數(shù)列,且它們的和為,求斜邊的最小值;

Ⅱ)已知均為正整數(shù),成等差數(shù)列,將滿足條件的三角形的面積從小到大排成一列,,求滿足不等式的所有的值;

Ⅲ)已知成等比數(shù)列,若數(shù)列滿足,證明:數(shù)列中的任意連續(xù)三項為邊長均可以構成直角三角形,是正整數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的參數(shù)方程為,其中為參數(shù),且在直角坐標系中,以坐標原點為極點,以軸正半軸為極軸建立極坐標系.

1)求曲線的極坐標方程;

2)設是曲線上的一點,直線被曲線截得的弦長為,求點的極坐標.

查看答案和解析>>

同步練習冊答案