在平面直角坐標(biāo)系中,已知圓 的圓心為,過點(diǎn)且斜率為的直線與圓相交于不同的兩點(diǎn).
(Ⅰ)求的取值范圍;
(Ⅱ)以O(shè)A,OB為鄰邊作平行四邊形OADB,是否存在常數(shù),使得直線OD與PQ平行?如果存在,求值;如果不存在,請(qǐng)說明理由.
(Ⅰ)先設(shè)出直線的方程,由直線與圓有兩個(gè)不同的交戰(zhàn),故聯(lián)立圓方程可得得一元二次方程,由判別式大于0可得K的取值范圍為;(Ⅱ)沒有符合題意的常數(shù),理由見解析.
【解析】
試題分析:(Ⅰ);(Ⅱ)由向量加減法,可利用向量處理,設(shè),則,由與共線等價(jià)于,然后由根與系數(shù)關(guān)系可得,由(Ⅰ)知,故沒有符合題意的常數(shù).注意運(yùn)用向量法和方程的思想.
試題解析:(Ⅰ)圓的方程可寫成,所以圓心為,
過且斜率為的直線方程為.
代入圓方程得,整理得. 、
直線與圓交于兩個(gè)不同的點(diǎn)等價(jià)于,
解得,即的取值范圍為.
(Ⅱ)設(shè),則,
由方程①, 、
又. ③
而.
所以與共線等價(jià)于,
將②③代入上式,解得
由(Ⅰ)知,故沒有符合題意的常數(shù).
考點(diǎn):1.直線與圓的位置關(guān)系;2.一元二次方程的根的判別式;3.向量共線的充要條件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
π |
2 |
3π |
2 |
AC |
BC |
π |
2 |
2 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com