精英家教網 > 高中數學 > 題目詳情
在墻上掛著一塊邊長為16 cm的正方形木板,上面畫了小、中、大三個同心圓,半徑分別為2 cm,4 cm,?6 cm,某人站在3m之外向此板投鏢,設投鏢擊中線上或沒有投中木板時都不算,可重投,問:

(1)投中大圓內的概率是多少?

(2)投中小圓與中圓形成的圓環(huán)的概率是多少?

(3)投中大圓之外的概率是多少?

解析:S正方形=16×16=256(cm2),

S小圓=π×22=4π(cm2),

S圓環(huán)=π×42-π×22=12π(cm2),

S大圓=π×62=36π(cm2),

S大圓環(huán)外=16×16-36π=(256-36π) cm2,

則(1)投中大圓的概率P(A1)=≈0.442;

(2)投中小圓與中圓形成的圓環(huán)的概率P(A2)=≈0.147;

(3)投中大圓之外的概率P(A3)==1-P(A1)≈0.558.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在墻上掛著一塊邊長為16cm的正方形木板,上面畫了小、中、大三個同心圓,半徑分別為2cm,4cm,6cm,某人站在3m之外向此板投鏢,設投鏢擊中線上或沒有投中木板時都不算(可重投),問:
(Ⅰ)投中大圓內的概率是多少?
(Ⅱ)投中小圓與中圓形成的圓環(huán)的概率是多少?
(Ⅲ)投中大圓之外的概率是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

在墻上掛著一塊邊長為16cm的正方形木板,上面畫了大、中、小三個同心圓,半徑分別為2cm、4cm、6cm,某人站在3m之外向此板投鏢,設投中線上或沒有投中木板時不算,可重投,問:

    (1)投中大圓內的概率是多少?

    (2)投中小圓與中圓形成的圓環(huán)的概率是多少?

    (3)投中大圓之外的概率是多少?

   

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,在墻上掛著一塊邊長為16 cm的正方形木板,上面畫了小、中、大三個同心圓,半徑分別為2 cm、4 cm、6 cm,某人站在3 m之外向此板投鏢.設投鏢擊中線上或沒有投中木板時都不算,可重投,問:

(1)投中大圓內的概率是多少?

(2)投中小圓與中圓形成的圓環(huán)的概率是多少?

(3)投中大圓之外的概率是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

在墻上掛著一塊邊長為16cm的正方形木板,上面畫了大、中、小三個同心圓,半徑分別為2cm、4cm、6cm,某人站在3m之外向此板投鏢,設投中線上或沒有投中木板時不算,可重投,問:

    (1)投中大圓內的概率是多少?

    (2)投中小圓與中圓形成的圓環(huán)的概率是多少?

    (3)投中大圓之外的概率是多少?

查看答案和解析>>

同步練習冊答案