已知f(x)=
e-x(x≤0)
x
(x>0)
g(x)=f(x)-
1
2
x-b
有且僅有一個零點時,則b的取值范圍是
 
考點:根的存在性及根的個數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得,函數(shù)f(x)的圖象和直線y=
1
2
x+b只有一個交點,分類討論、數(shù)形結(jié)合求得b的范圍.
解答: 解:由題意可得,函數(shù)f(x)的圖象和直線y=
1
2
x+b
只有一個交點,如圖所示:
當(dāng)直線經(jīng)過點A(0,1)時,b=1;
當(dāng)直線和y=
x
(x>0)相切時,設(shè)切點B(x0
x0
),
1
2
=
x0
-b
x0-0
=
1
2
x0
,求得 x0=1,b=
1
2

當(dāng)直線過原點(0,0)時,b=0.
綜上可得,b≥1或b=
1
2
或b≤0,
故答案為:b≥1或b=
1
2
或b≤0.
點評:本題主要考查方程根的存在性及個數(shù)判斷,導(dǎo)數(shù)的幾何意義、斜率公式的應(yīng)用,體現(xiàn)了分類討論、數(shù)形結(jié)合、轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在(0,+∞)上的增函數(shù),且滿足對于任意x,y∈R,都有f(xy)=f(x)+f(y)成立.若f(3)=1,且f(a)>f(a-1)+2,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個三角形的三邊長分別是5,5,6,一只螞蟻在其內(nèi)部爬行,若不考慮螞蟻的大小,則某時刻該螞蟻距離三角形的三個頂點的距離均超過2的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若三棱錐S-ABC的所有頂點都在球O的球面上,SA⊥平面ABC,SA⊥平面ABC,SA=2
3
,AB=1,AC=2,∠BAC=60°,則球O的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓C:x2+y2-2x-4y-3=0的圓心坐標(biāo)為
 
;直線l:3x+4y+4=0與圓C位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={1,2,3,4,5,6,7,8,9,10,11,12},以下命題正確的序號是
 

①如果函數(shù)f(x)=x(x-a1)(x-a2)…(x-a7),其中ai∈M(i=1,2,3,…,7),那么f′(0)的最大值為127
②數(shù)列{an}滿足首項a1=2,ak+12-ak2=2,k∈N*,當(dāng)n∈M且n最大時,數(shù)列{an}有2048個.
③數(shù)列{an}(n=1,2,3,…,8)滿足a1=5,a8=7,|ak+1-ak|=2,k∈N*,如果數(shù)列{an}中的每一項都是集合M的元素,則符合這些條件的不同數(shù)列{an}一共有33個.
④已知直線amx+any+ak=0,其中am,an,ak∈M,而且am<an<ak,則一共可以得到不同的直線196條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,定義兩點P(x1,y1),Q(x2,y2)之間的“直角距離”為d(P,Q)=|x1-x2|+|y1-y2|.現(xiàn)有下列命題:
①若P,Q是x軸上兩點,則d(P,Q)=|x1-x2|;
②已知P(1,3),Q(sin2a,cos2a)(a∈R),則d(P,Q)為定值;
③原點O到直線x-y+1=0上任一點P的直角距離d(O,P)的最小值為
2
2
;
④設(shè)A(x,y)且x∈Z,y∈Z,若點A是在過P(1,3)與Q(5,7)的直線上,且點A到點P與Q的“直角距離”之和等于8,那么滿足條件的點A只有5個.
其中的真命題是
 
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=log3
1
2
,b=log0.62,c=
33
,則( 。
A、b<a<c
B、a<b<c
C、c<a<b
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線x-2y+2=0經(jīng)過橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左頂點A和上頂點D,橢圓C的右頂點為B,點S是橢圓上位于x軸上方的動點,直線AS,BS與直線l:x=4分別交于M,N兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)(。┰O(shè)直線AS,BS的斜率分別為k1,k2,求證k1•k2為定值;
(ⅱ)求線段MN的長度的最小值.

查看答案和解析>>

同步練習(xí)冊答案