已知函數(shù)f(x)=x2+ax+blnx(x>0,實(shí)數(shù)a,b為常數(shù)).
(Ⅰ)若a=1,b=-1,求函數(shù)f(x)的極值;
(Ⅱ)若a+b=-2,討論函數(shù)f(x)的單調(diào)性.
分析:(Ⅰ)求出導(dǎo)函數(shù)的根,判斷導(dǎo)函數(shù)左右兩邊的符號(hào),得函數(shù)的單調(diào)性,據(jù)極值的定義求出極值.
(Ⅱ)求出導(dǎo)函數(shù)的根,討論根在不在定義域內(nèi);若根在定義域內(nèi),討論兩根的大小;判斷根左右兩邊導(dǎo)函數(shù)的符號(hào),據(jù)單調(diào)性與導(dǎo)函數(shù)的關(guān)系求出單調(diào)性.
解答:解:(Ⅰ)函數(shù)f(x)=x2+x-lnx,則f′(x)=2x+1-
1
x
,
令f′(x)=0,得x=-1(舍去),x=
1
2

當(dāng)0<x<
1
2
時(shí),f′(x)<0,函數(shù)單調(diào)遞減;
當(dāng)x>
1
2
時(shí),f′(x)>0,函數(shù)單調(diào)遞增;
∴f(x)在x=
1
2
處取得極小值
3
4
+ln2.

(Ⅱ)由于a+b=-2,則a=-2-b,從而f(x)=x2-(2+b)x+blnx,
則f′(x)=2x-(2+b)+
b
x
=
(2x-b)(x-1)
x

令f′(x),得x1=
b
2
,x2=1.
1、當(dāng)
b
2
≤0,即b<0時(shí),函數(shù)f(x)的單調(diào)遞減區(qū)間為(0,1),
單調(diào)遞增區(qū)間為(1,+∞);
2、當(dāng)0<
b
2
<1,即0<b<2時(shí),列表如下:
所以,函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,
b
2
),(1,+∞),
單調(diào)遞減區(qū)間為(
b
2
,1);
3、當(dāng)
b
2
=1,即b=2時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,+∞);
4、當(dāng)
b
2
>1,即b>2時(shí),列表如下:
精英家教網(wǎng)
所以函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,1),(
b
2
,+∞),
單調(diào)遞減區(qū)間為(1,
b
2
);
綜上:當(dāng)
b
2
≤0,即b<0時(shí),
函數(shù)f(x)的單調(diào)遞減區(qū)間為(0,1),
單調(diào)遞增區(qū)間為(1,+∞);
當(dāng)0<
b
2
<1,即0<b<2時(shí),
函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,
b
2
),(1,+∞),
單調(diào)遞減區(qū)間為(
b
2
,1);
當(dāng)
b
2
=1,即b=2時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,+∞);
當(dāng)
b
2
>1,即b>2時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,1),(
b
2
+∞),
單調(diào)遞減區(qū)間為(1,
b
2
).
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì):求極值,求單調(diào)區(qū)間.考查分類(lèi)討論時(shí)注意分類(lèi)的起點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線(xiàn)y=f(x)在與x軸交點(diǎn)處的切線(xiàn)為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿(mǎn)足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線(xiàn)y=f(x)在與x軸交點(diǎn)處的切線(xiàn)為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿(mǎn)足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案