設(shè)等比數(shù)列的首項(xiàng)為,公比為為正整數(shù)),且滿足的等差中項(xiàng);數(shù)列滿足).
(1)求數(shù)列的通項(xiàng)公式;
(2)試確定的值,使得數(shù)列為等差數(shù)列;
(3)當(dāng)為等差數(shù)列時(shí),對(duì)每個(gè)正整數(shù),在之間插入個(gè)2,得到一個(gè)新數(shù)列. 設(shè)是數(shù)列 的前項(xiàng)和,試求滿足的所有正整數(shù).

(Ⅰ);(Ⅱ) ;(Ⅲ) 

解析試題分析:(Ⅰ)由的等比中項(xiàng)可得,根據(jù)等比數(shù)列基本量可得到關(guān)于的方程,從而求出,由 得到數(shù)列的通項(xiàng)公式; (Ⅱ)由題中所給關(guān)于表達(dá)式化簡(jiǎn)得用表示的表達(dá)式,即,這樣可聯(lián)想到去求出,利用等差中項(xiàng)可求出的值,并由此求出的表達(dá)式,最后根據(jù)求的表達(dá)式結(jié)合等差數(shù)列的定義去證明它是一個(gè)等差數(shù)列; (Ⅲ)由(Ⅰ)知數(shù)列的通項(xiàng)公式,由(Ⅱ)知數(shù)列的通項(xiàng)公式,結(jié)合題中要求分析得:, ,則可得出數(shù)列的大體如下:,可見(jiàn)數(shù)列的前三項(xiàng)均為,由此可驗(yàn)證的具體情況,可得其中符合題中要求,當(dāng)時(shí),分析不可能為,因?yàn)榍懊娴挠来笥?img src="http://thumb.zyjl.cn/pic5/tikupic/ac/2/kyutw2.png" style="vertical-align:middle;" />,那么要存在肯定為,這樣就可得到關(guān)于一個(gè)假設(shè)的等式,并可化簡(jiǎn)得關(guān)于的表達(dá)式,根據(jù)特點(diǎn)可設(shè)出對(duì)應(yīng)的函數(shù),最后由導(dǎo)數(shù)在函數(shù)中的運(yùn)用去判斷出在上函數(shù)恒為正.
試題解析:解:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/89/0/1bkwf4.png" style="vertical-align:middle;" />,所以,
解得(舍),則      3分
,所以           5分
(Ⅱ)由,得,
所以,
則由,得          8分
而當(dāng)時(shí),,由(常數(shù))知此時(shí)數(shù)列為等差數(shù)列    10分
(Ⅲ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f8/b/iha3n.png" style="vertical-align:middle;" />,易知不合題意,適合題意    11分
當(dāng)時(shí),若后添入的數(shù)2,則一定不適合題意,從而必是數(shù)列中的
某一項(xiàng),則
所以,即      13分
,則
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/76/d/1ie694.png" style="vertical-align:middle;" />,
所以當(dāng)時(shí),,又,
從而

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列中,公差,其前項(xiàng)和為,且滿足:,
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令,),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的首項(xiàng),且滿足
(1)設(shè),求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的前n項(xiàng)和為,已知,,數(shù)列是公差為d的等差數(shù)列,.
(1)求d的值;
(2)求數(shù)列的通項(xiàng)公式;
(3)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的各項(xiàng)都是正數(shù),且對(duì)任意,都有,其中 為數(shù)列的前項(xiàng)和。
(1)求證數(shù)列是等差數(shù)列;
(2)若數(shù)列的前項(xiàng)和為Tn,求Tn。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在等差數(shù)列{an}中,為其前n項(xiàng)和,且
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)等差數(shù)列的前項(xiàng)和為.且
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列滿足:,,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列.設(shè),數(shù)列滿足;
(Ⅰ)求證:數(shù)列成等差數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和
(Ⅲ)若對(duì)一切正整數(shù)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列前n項(xiàng)和為成等差數(shù)列.
(I)求數(shù)列的通項(xiàng)公式;
(II)數(shù)列滿足,求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案