不等式(1-x) (2+x)<0的解集為( )
A.{x|x>1}
B.{x|x<-2}
C.{x|x<-2或x>1}
D.{x|-2<x<1}
【答案】分析:本題的方法是:要使不等式小于0即要兩個(gè)因式異號(hào),得到一個(gè)一元一次不等式,討論x的值即可得到解集.
解答:解:∵不等式(1-x) (2+x)<0
得到(x-1)(x+2)>0
即x-1>0且x+2>0解得:x>1;
或x-1<0且x+2<0,解得x<-2,
所以不等式的解集為x<-2或x>1
故選C
點(diǎn)評(píng):本題主要考查學(xué)生求不等式解集的能力,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

不等式(1+x)(1-|x|)>0的解集是( 。
A、{x|0≤x<1}B、{x|x<0且x≠-1}C、{x|-1<x<1}D、{x|x<1且x≠-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、平面內(nèi)滿足不等式組1≤x+y≤3,-1≤x-y≤1,x≥0,y≥0的所有點(diǎn)中,使目標(biāo)函數(shù)z=5x+4y取得最大值的點(diǎn)的坐標(biāo)是
(2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式3-
1-x
3
3
的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題有(1)、(2)、(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計(jì)分
(1)二階矩陣M對(duì)應(yīng)的變換將向量
1
-1
,
-2
1
分別變換成向量
3
-2
-2
1
,直線l在M的變換下所得到的直線l′的方程是2x-y-1=0,求直線l的方程.
(2)過點(diǎn)P(-3,0)且傾斜角為30°的直線l和曲線C:
x=s+
1
s
y=s-
1
s
(s為參數(shù))相交于A,B兩點(diǎn),求線段AB的長(zhǎng).
(3)若不等式|a-1|≥x+2y+2z,對(duì)滿足x2+y2+z2=1的一切實(shí)數(shù)x,y,z恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5  不等式選講
解不等式|2x+1|-|x-4|>2.

查看答案和解析>>

同步練習(xí)冊(cè)答案