已知函數(shù)f(x)=2cos2x+2sinxcosx
①求函數(shù)f(x)的最小正周期;
②在△ABC中,a,b,c為內(nèi)角A,B,C的對邊,若f(C)=2,a+b=4,求△ABC的最大面積.
【答案】分析:①利用二倍角公式及輔助角公式對已知函數(shù)化簡可得,f(x)=2sin(2x+)+1,利用周期公式T=可求
②由①知,即,又0<C<π 可求C=,代入三角形的面積公式=可求面積的最大值
解答:解:①由已知f(x)=2cos2x+2sinxcosx
=cos2x+1+sin2x
=2sin(2x+)+1
                            …(6分)
②由①知,即
又0<C<π
<2C+


==
當且僅當a=b時,                     …(12分)
點評:本題主要考查了三角函數(shù)的二倍角公式、輔助角公式在三角函數(shù)化簡中的應(yīng)用,由三角函數(shù)值求角,基本不等式在函數(shù)最值求解中的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
1
x
,(x>0),若存在實數(shù)a,b(a<b),使y=f(x)的定義域為(a,b)時,值域為(ma,mb),則實數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時,函數(shù)的圖象與x軸有兩個不同的交點;
(2)如果函數(shù)的一個零點在原點,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)已知函數(shù)f(x)=2-|x|,無窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4;
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
(Ⅰ)求實數(shù)m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案