精英家教網 > 高中數學 > 題目詳情
精英家教網A.如圖,四邊形ABCD內接于⊙O,弧AB=弧AD,過A點的切線交CB的延長線于E點.
求證:AB2=BE•CD.
B.已知矩陣M
2-3
1-1
所對應的線性變換把點A(x,y)變成點A′(13,5),試求M的逆矩陣及點A的坐標.
C.已知圓的極坐標方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(1)將圓的極坐標方程化為直角坐標方程;
(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.
D.解不等式|2x-1|<|x|+1.
分析:A:連接AC.因為EA切⊙O于A,所以∠EAB=∠ACB.因為弧AB=弧AD,所以AB=AD.∠EAB=∠ACD.由題設條件推導出△ABE∽△CDA,從而證明出AB2=BE•CD.
B:依題意得由M=
2-3
1-1
,得|M|=1,故M-1=
-13
-12
,再由矩陣方程能求出點A的坐標.
C:(1)ρ2=x2+y2,ρcosθ=x,ρsinθ=y,轉換得x2+y2-4x-4y+6=0.
(2)圓的參數方程為
x=2+
2
cosα
y=2+
2
sinα
(α∈R)
,由此能求出x+y的最大值和最小值.
D:當x<0時,x不存在;當0≤x<
1
2
時,解得0<x<
1
2
;當x≥
1
2
,解得
1
2
≤x<2
,由此能得到原不等式的解集.
解答:A 證明:連接AC.
因為EA切⊙O于A,所以∠EAB=∠ACB.
因為弧AB=弧AD,所以∠ACD=∠ACB,AB=AD.
于是∠EAB=∠ACD.
又四邊形ABCD內接于⊙O,所以∠ABE=∠D.
所以△ABE∽△CDA.
于是
AB
CD
=
BE
DA
,即AB•DA=BE•CD
所以AB2=BE•CD.

B 解:依題意得
M=
2-3
1-1
,得|M|=1,故M-1=
-13
-12
,
從而由
2-3
1-1
x
y
=
13
5
x
y
=
-13
-12
13
5
=
-1×13+3×5
-1×13+2×5
=
2
-3

x=2
y=-3
即A(2,-3)為所求.

C 解:(1)ρ2=x2+y2,ρcosθ=x,ρsinθ=y,轉換得x2+y2-4x-4y+6=0.
(2)圓的參數方程為
x=2+
2
cosα
y=2+
2
sinα
(α∈R),
所以x+y=4+2sin(α+
π
4
)
,那么x+y的最大值為6,最小值為2.

D 解:當x<0時,原不等式可化為-2x+1<-x+1,解得x>0
又∵x<0,∴x不存在;
當0≤x<
1
2
時,原不等式可化為-2x+1<x+1,解得x>0
又∵0≤x<
1
2
,∴0<x<
1
2
;當x≥
1
2
,∴
1
2
≤x<2
綜上,原不等式的解集為{x|0<x<2}.
點評:本題考查二階行列式、圓的性質、極坐標和含絕對值的不等式,解題時要注意公式的靈活運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網附加題:
A.如圖,四邊形ABCD內接于圓O,弧AB=弧AD,過A點的切線交CB的延長線于E點.
求證:AB2=BE•CD.
B.設數列{an},{bn}滿足an+1=3an+2bn,bn+1=2bn,且滿足
an+4
bn+4
=M
an
bn
,試求二階矩陣M.
C.已知橢圓C的極坐標方程為ρ2=
12
3cos2θ+4sin2θ
,點F1,F2為其左、右焦點,直線l的參數方程為
x=2+
2
2
t
y=
2
2
t
(t為參數,t∈R).求點F1,F2到直線l的距離之和.
D.已知x,y,z均為正數.求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,四邊形ABCD中,AB=AD=CD=1,BD=
2
,BD⊥CD.將四邊形ABCD沿對角線BD折成四面體A′-BCD,使平面A'BD⊥平面BCD,則BC與平面A′CD所成的角的正弦值為
3
3
3
3

查看答案和解析>>

科目:高中數學 來源:2010年江蘇省泰州高級中學高考數學模擬試卷(解析版) 題型:解答題

附加題:
A.如圖,四邊形ABCD內接于圓O,弧AB=弧AD,過A點的切線交CB的延長線于E點.
求證:AB2=BE•CD.
B.設數列{an},{bn}滿足an+1=3an+2bn,bn+1=2bn,且滿足=M,試求二階矩陣M.
C.已知橢圓C的極坐標方程為,點F1,F2為其左、右焦點,直線l的參數方程為(t為參數,t∈R).求點F1,F2到直線l的距離之和.
D.已知x,y,z均為正數.求證:

查看答案和解析>>

科目:高中數學 來源:2009-2010學年江蘇省淮安市洪澤中學高三(下)4月月考數學試卷(解析版) 題型:解答題

A.如圖,四邊形ABCD內接于⊙O,弧AB=弧AD,過A點的切線交CB的延長線于E點.
求證:AB2=BE•CD.
B.已知矩陣M所對應的線性變換把點A(x,y)變成點A′(13,5),試求M的逆矩陣及點A的坐標.
C.已知圓的極坐標方程為:
(1)將圓的極坐標方程化為直角坐標方程;
(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.
D.解不等式|2x-1|<|x|+1.

查看答案和解析>>

同步練習冊答案