一個口袋中有質(zhì)地、大小完全相同的5個球,編號分別為1,2,3,4,5,甲、乙兩人玩一種游戲:甲先摸出一個球,記下編號,放回后乙再摸一個球,記下編號,如果兩個編號的和為偶數(shù)算甲贏,否則算乙贏.
(Ⅰ)求甲贏且編號的和為6的事件發(fā)生的概率;
(Ⅱ)這種游戲規(guī)則公平嗎?試用概率說明理由.
(1) (2)這種游戲規(guī)則不公平
(Ⅱ)這種游戲規(guī)則不公平.(7分)
設“甲勝”為事件B,“乙勝”為事件C,則甲勝即兩數(shù)字之和為偶數(shù)所包含的基本事件數(shù)為13個:(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5)(4,2) ,(4,4),(5,1) ,(5,3),(5,5).
所以甲勝的概率P(B)=,從而乙勝的概率P(C)=1-=.
由于P(B)≠P(C),所以這種游戲規(guī)則不公平.(12分)
考點:古典概型
點評:主要是考查了隨機事件的 概率的求解運用,屬于基礎題。
科目:高中數(shù)學 來源: 題型:解答題
某市直小學為了加強管理,對全校教職工實行新的臨時事假制度:“每位教職工每月在正常的工作時間,臨時有事,可請假至多三次,每次至多一小時”.現(xiàn)對該制度實施以來50名教職工請假的次數(shù)進行調(diào)查統(tǒng)計,結果如下表所示:
請假次數(shù) | ||||
人數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在人壽保險業(yè)中,要重視某一年齡的投保人的死亡率,經(jīng)過隨機抽樣統(tǒng)計,得到某市一個投保人能活到75歲的概率為0.60,試問:
(1)若有3個投保人, 求能活到75歲的投保人數(shù)的分布列;
(2)3個投保人中至少有1人能活到75歲的概率.(結果精確到0.01)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某學校有甲、乙、丙三名學生報名參加2012年高校自主招生考試,三位同學通過自主招生考試考上大學的概率分別是,且每位同學能否通過考試時相互獨立的。
(Ⅰ)求恰有一位同學通過高校自主招生考試的概率;
(Ⅱ)若沒有通過自主招生考試,還可以參加2012年6月的全國統(tǒng)一考試,且每位同學通過考試的概率均為,求這三位同學中恰好有一位同學考上大學的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知男人中有5%患色盲,女人中有0.25%患色盲,從100個男人和100個女人中任選一人.
(1)求此人患色盲的概率;
(2)如果此人是色盲,求此人是男人的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
生產(chǎn)A,B兩種元件,其質(zhì)量按測試指標劃分為:指標大于或等于為正品,小于為次品.現(xiàn)隨機抽取這兩種元件各件進行檢測,檢測結果統(tǒng)計如下:
測試指標 | |||||
元件A | |||||
元件B |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設有關于x的一元二次方程x2+2ax+b2=0.
(1)若a是從0,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
(2) 若是從區(qū)間[0,3] 任 取 的一個數(shù),是從區(qū)間[0,2]任取的一個數(shù),求上述方程有實根的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
我區(qū)高三期末統(tǒng)一測試中某校的數(shù)學成績分組統(tǒng)計如下表:
分組 | 頻數(shù) | 頻率 |
合計 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)( )
(1)若從集合中任取一個元素,從集合中任取一個元素,
求方程恰有兩個不相等實根的概率;
(2)若從區(qū)間中任取一個數(shù),從區(qū)間中任取一個數(shù)
求方程沒有實根的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com