16.函數(shù)y=cos2x+sinx-1的最大值是$\frac{1}{4}$.

分析 直接利用換元法,通過三角函數(shù)的有界性,轉(zhuǎn)化函數(shù)為二次函數(shù),求出值域即可.

解答 解:由y=cos2x+sinx-1?y=-sin2x+sinx,
令sin x=t,則有y=-t2+t,t∈[-1,1],
函數(shù)的對(duì)稱軸:t=$\frac{1}{2}$,開口向下,
當(dāng)t=$\frac{1}{2}$時(shí),函數(shù)y取最大值,代入y=-t2+t可得ymax=$\frac{1}{4}$
故答案為:$\frac{1}{4}$.

點(diǎn)評(píng) 本題考查三角函數(shù)的有界性,二次函數(shù)的最值,考查轉(zhuǎn)化思想以及計(jì)算能力.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若x,y滿足約束條件$\left\{\begin{array}{l}x≥0\\ x+2y≥3\\ 2x+y≤3\end{array}\right.$,則z=3x-y的最小值是$\frac{1}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在銳角△ABC中,求證:sinA+sinB+sinC>cosA+cosB+cosC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知A(1,2),B(2,3),且點(diǎn)P滿足$\overrightarrow{AP}$=2$\overrightarrow{PB}$,則點(diǎn)P的坐標(biāo)為$(\frac{5}{3},\frac{8}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知關(guān)于x,y的二元一次方程組的增廣矩陣是$({\begin{array}{l}1&{3-λ}&{1+λ}\\ λ&2&{2λ}\end{array}})$,若該線性方程組有無窮多組解,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)方程x2-3$\sqrt{3}$x+4=0兩實(shí)根為x1和x2,記α=arctanx1,β=arctanx2,求α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.下面幾個(gè)不等式的證明過程:
①若a、b∈R,則$\frac{a}$+$\frac{a}$≥2$\sqrt{\frac{a}•\frac{a}}$=2;
②x∈R且x≠0,則|x+$\frac{4}{x}}$|=|x|+$\frac{4}{|x|}$≥2$\sqrt{|x|•\frac{4}{|x|}}$;
③若a、b∈R,ab<0,則$\frac{a}$+$\frac{a}$=-(-$\frac{a}$+$\frac{-a}$)≤-2$\sqrt{-\frac{a}•\frac{-a}}$=-2.
其中正確的序號(hào)是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{1{6}^{x},x≤0}\end{array}\right.$,則f(f($\frac{1}{3}$))=$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列四個(gè)判斷:
①若兩班級(jí)的人數(shù)分別是m,n,數(shù)學(xué)平均分分別是a,b,則這兩個(gè)班的數(shù)學(xué)平均分為$\frac{a+b}{2}$;
②命題p:?x∈R,x2-1>0,則命題p的否定是?x∈R,x2-1≤0;
③p:a+b≥2$\sqrt{ab}$(a,b∈R)q:不等式|x|>x的解集是(-∞,0),則‘p∧q’為假命題;
④已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=2.
其中正確判斷的個(gè)數(shù)有( 。
A.3個(gè)B.0個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案