設(shè)函數(shù)ht(x)=3tx-2t
3
2
,若有且僅有一個正實數(shù)x0,使得h7(x0)≥ht(x0)對任意的正數(shù)t都成立,則x0=( 。
分析:構(gòu)造函數(shù)g(t)=3tx0-2t
3
2
,則g′(t)=3x0-3t
1
2
,分析可得g(
x
2
0
)即為函數(shù)g(t)=3tx0-2t
3
2
的最大值,則可將已知化為
x
2
0
=7.
解答:解:令g(t)=3tx0-2t
3
2
-(21x0-2
73
),則g′(t)=3x0-3t
1
2

令g′(t)=0,則t=
x
2
0
,由此得t<
x
2
0
,g′(t)>0,t>
x
2
0
,g′(t)<0,
可得g(
x
2
0
)即為函數(shù)g(t)=3tx0-2t
3
2
的最大值,
若有且僅有一個正實數(shù)x0,使得h7(x0)≥ht(x0)對任意的正數(shù)t都成立,
則g(7)為函數(shù)g(t)的最大值,且7是函數(shù)g(t)的唯一最大值
x
2
0
=7
又∵x0為正實數(shù),
故x0=
7

故選D
點評:本題考查的知識點是函數(shù)恒成立問題,其中構(gòu)造以t為自變量的新函數(shù),并分析函數(shù)的單調(diào)性,進而將已知轉(zhuǎn)化為
x
2
0
=7是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=-
1
3
x3+
1
2
x2+2ax
,當(dāng)0<a<2時,有f(x)在x∈[1,4]上的最小值為-
16
3
,則f(x)在該區(qū)間上的最大小值是
10
3
10
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•崇明縣一模)設(shè)函數(shù)f(x)=cos(2x+
π
3
)+sin2x

(1)求函數(shù)f(x)的最大值和最小正周期;
(2)設(shè)A,B,C為△ABC的三個內(nèi)角,f(
C
2
)=-
1
4
,且C為銳角,S△ABC=5
3
,a=4,求c邊的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)ht(x)=3tx-2t
32
,若有且僅有一個正實數(shù)x0,使得h4(x0)≥ht(x0)對任意的正實數(shù)t成立,則x0=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)ht(x)=3tx-2t
3
2
,若有且僅有一個正實數(shù)x0,使得h7(x0)≥ht(x0)對任意的正數(shù)t都成立,則x0=(  )
A.5B.
5
C.3D.
7

查看答案和解析>>

同步練習(xí)冊答案