閱讀下面程序框圖,任意輸入一次x(0≤x≤1)與y(0≤y≤1),則能輸出數(shù)對(x,y)的概率為

[  ]

A.

B.

C.

D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:課標綜合版 專題復習 題型:

函數(shù)f(x)=Asin(ωx+φ)的圖象如圖所示,其中A>0,ω>0,|φ|<.則下列關于函數(shù)f(x)的說法中正確的是

[  ]

A.

對稱軸方程是

B.

C.

最小正周期是π

D.

在區(qū)間上單調遞減

查看答案和解析>>

科目:高中數(shù)學 來源:課標綜合版 專題復習 題型:

對定義在區(qū)間l,上的函數(shù)f(x),若存在開區(qū)間(a,b)I和常數(shù)C,使得對任意的x∈(a,b)都有-C<f(x)<C,且對任意的x(a,b)都有|f(x)|=C恒成立,則稱函數(shù)f(x)為區(qū)間I上的“Z型”函數(shù).

(Ⅰ)求證:函數(shù)f(x)=|x-3|-|x-1|是R上的“Z型”函數(shù);

(Ⅱ)設f(x)是(I)中的“Z型”函數(shù),若不等式|t|=|t+1|≥f(x)對任意的x∈R恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:課標綜合版 專題復習 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知向量m=(cosA,cosB),n=(2c+b,a),且m⊥n.

(Ⅰ)求角A的大。

(Ⅱ)若a=4,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:課標綜合版 專題復習 題型:

對定義在區(qū)間l,上的函數(shù)f(x),若存在開區(qū)間(a,b)I和常數(shù)C,使得對任意的x∈(a,b)都有-C<f(x)<C,且對任意的x(a,b)都有|f(x)|=C恒成立,則稱函數(shù)f(x)為區(qū)間Ⅰ上的“Z型”函數(shù).

(Ⅰ)求證:函數(shù)f(x)=|x-3|-|x-1|是R上的“Z型”函數(shù);

(Ⅱ)設f(x)是(Ⅰ)中的“Z型”函數(shù),若不等式|t|=|t+1|≥f(x)對任意的x∈R恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:課標綜合版 專題復習 題型:

關于函數(shù)函數(shù)f(x)=2cosx(cosx+sinx)-1,以下結論正確的是

[  ]

A.

f(x)的最小正周期是π,在區(qū)間(-)是增函數(shù)

B.

f(x)的最小正周期是π,在區(qū)間(-,)是增函數(shù)

C.

f(x)的最小正周期是π,最大值是

D.

f(x)的最小正周期是2π,最大值是2

查看答案和解析>>

科目:高中數(shù)學 來源:課標綜合版 專題復習 題型:

△ABC中內角A,B,C的對邊分別為a,b,c,向=(2sinB,-),=(cos2B,2cos2-1)且

(1)求銳角B的大小,

(2)如果b=2,求△ABC的面積S△ABC的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:課標綜合版 專題復習 題型:

關于函數(shù)函數(shù)f(x)=2cosx(cosx+sinx)-1,以下結論正確的是

[  ]

A.

f(x)的最小正周期是π,在區(qū)間(-,)是增函數(shù)

B.

f(x)的最小正周期是π,在區(qū)間(-,)是增函數(shù)

C.

f(x)的最小正周期是π,最大值是

D.

f(x)的最小正周期是2π,最大值是2

查看答案和解析>>

科目:高中數(shù)學 來源:課標綜合版 專題復習 題型:

在區(qū)間[0,π]內隨機取兩個數(shù)分別記為a、b,則使得函數(shù)f(x)=x2+2ax+b2+π有零點的概率為

[  ]

A.

B.

C.

D.

查看答案和解析>>

同步練習冊答案