如圖,四棱錐P-ABCD中,,,,,的中點(diǎn).

(1)求證:
(2)求二面角的平面角的正弦值.
(1)見解析;(2).

試題分析:(1)要證線面垂直,需證線與平面內(nèi)的兩條相交直線垂直,由底面,先證,得,再證,從而得;(2)以為原點(diǎn)建立空間直角坐標(biāo)系,利用空間向量解決問題.
試題解析:(1)證明:底面,,又,故,故                4分
, 的中點(diǎn),故,從而,故
易知,故             6分
(2)如圖建立空間直角坐標(biāo)系,設(shè),則、、、,

,從而,  9分
設(shè)為平面的法向量,
可以取         11分
為平面的法向量,若二面角的平面角為
         11分
因此。        12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在如圖所示的幾何體中,四邊形均為全等的直角梯形,且.

(Ⅰ)求證:平面;
(Ⅱ)設(shè),求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱中,,,異面直線所成
的角為.

(Ⅰ)求證:;
(Ⅱ)設(shè)的中點(diǎn),求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知多面體的底面是邊長(zhǎng)為的正方形,底面,,且
(Ⅰ)求多面體的體積;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)記線段BC的中點(diǎn)為K,在平面ABCD內(nèi)過點(diǎn)K作一條直線與平面平行,要求保留作圖痕跡,但不要求證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩條不同的直線mn和兩個(gè)不同的平面α,β,給出下列四個(gè)命題:
①若mα,nβ,且αβ,則mn;②若mα,nβ,且αβ,則mn;③若mα,nβ,且αβ,則mn;④若mα,nβ,且αβ,則mn.其中正確的個(gè)數(shù)有(  ).
A.1B.2C.3 D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正方體中,是棱的中點(diǎn),是側(cè)面內(nèi)的動(dòng)點(diǎn),且∥平面,記與平面所成的角為,下列說法錯(cuò)誤的是(   )
A.點(diǎn)的軌跡是一條線段B.不可能平行
C.是異面直線D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為異面直線,點(diǎn)A、B在直線上,點(diǎn)C、D在直線上,且AC=AD,BC=BD,則直線、所成的角為 (    )
A. 900        B. 600      C. 450        D. 300

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在三棱錐A-BCD中,.給出下列命題:
① 分別作△BAD和△CAD的邊AD上的高,則這兩條高所在直線異面;
② 分別作△BAD和△CAD的邊AD上的高,則這兩條高相等;
;

其中正確的命題有__________________,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,長(zhǎng)方體ABCD—A1B1C1D1中,BB1=BC,P為C1D1上一點(diǎn),則異面直線PB與B1C所成角的大。ā 。
A.是45°B.是60°
C.是90°D.隨P點(diǎn)的移動(dòng)而變化

查看答案和解析>>

同步練習(xí)冊(cè)答案