(2012•湛江二模)四棱錐P-ABCD中,底面ABCD是邊長為2a的正方形,各側(cè)棱均與底面邊長相等,E、F分別是PA、PC的中點.
(1)求證:PC∥平面BDE;
(2)求證:平面BDE丄平面BDF;
(3)求四面體E-BDF的體積.
分析:(1)連接AC交BD于O.連接OE.E、O分別是PA、AC的中點.推出EO∥PC.然后證明PC∥平面BDE.
(2)證明BE⊥PA,DE⊥PA,推出PA⊥平面BDE,然后證明平面BDE⊥平面BDF.
(3)利用VE-BDF=VF-BDE=
1
3
•OF•S△EBD
求出BE、BD,然后求解體積.
解答:解:(1)證明:連接AC交BD于O.連接OE.
在△PAC中,E、O分別是PA、AC的中點.
∴EO∥PC.
∵EO?平面BDE,PC?平面BDE,
∴PC∥平面BDE.
(2)證明:∵△PAB是等邊三角形,且E是PA的中點,
∴BE⊥PA,同理DE⊥PA,
∴PA⊥平面BDE,
在△PAC中,F(xiàn)、O分別是PC、AC中點
∴OF⊥平面BDE,而OF?平面BDE,
∴平面BDE⊥平面BDF.
(3)解:∵OF⊥平面BDE,
∴VE-BDF=VF-BDE=
1
3
•OF•S△EBD

在等邊三角形PAB中,PA=AB=2a,E是PA中點,
∴BE=
AB2-AE2
=
3
a
同理DE=
3
a

∵BD=
AB2+AD2
=2
2
a

在等腰三角形EBD中,EO是底邊BD上的高
EO=
EB2-BO2
=a
,顯然,OF=EO,
∴VE-BDF=VF-BDE=
1
3
•OF•S△EBD

=
1
3
•a•
1
2
•BD•EO=
2
3
a3
點評:本題考查直線與平面平行,平面與平面垂直,幾何體的體積的求法,考查空間想象能力,邏輯推理能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•湛江二模)曲線y=-x3+3x2在點(1,2)處的切線方程為
y=3x-1
y=3x-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湛江二模)某市為了解今年高中畢業(yè)生的身體素質(zhì)狀況,從本市某校高中畢業(yè)班中抽取一個班進行實心球測試,成績在8米及以上的為合格.把所得數(shù)據(jù)進行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知第一小組為[5,6),從左到右前5個小組的頻率分別為0.06,0.10,0.14,0.28,0.30.第6小組的頻數(shù)是6.
(1)求這次實心球測試成績合格的人數(shù);
(2)用此次測試結(jié)果估計全市畢業(yè)生的情況.若從今年的高中畢業(yè)生中隨機抽取兩名,記X表示兩人中成績不合格的人數(shù),求X的分布列及數(shù)學期望;
(3)經(jīng)過多次測試后,甲成績在8~10米之間,乙成績在9.5~10.5米之間,現(xiàn)甲、乙各投一次,求甲投得比乙遠的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湛江二模)拋物線x2=4y的焦點坐標為
(0,1)
(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湛江二模)運行如圖所示框圖,坐標滿足不等式組
x+y-3≥0
x-y+2≥0
x≤3
的點共有
2
2
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湛江二模)如圖,Rt△ABC中,∠C=90°,∠A=30°,圓O經(jīng)過B、C且與AB、AC分別相交于D、E.若AE=EC=2
3
,則圓O的半徑r=
7
7

查看答案和解析>>

同步練習冊答案