設(shè)函數(shù)
(1)若,求函數(shù)上的最小值;
(2)若函數(shù)存在單調(diào)遞增區(qū)間,試求實(shí)數(shù)的取值范圍;
(3)求函數(shù)的極值點(diǎn).
(1)最小值為.(2).
(3)當(dāng)時(shí),函數(shù)沒有極值點(diǎn);時(shí),是函數(shù)的極大值點(diǎn);是函數(shù)的極小值點(diǎn).

試題分析:(1)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043144816535.png" style="vertical-align:middle;" />,根據(jù),得上增函數(shù),當(dāng)時(shí),取得最小值.
(2)由于,設(shè).
依題意,在區(qū)間上存在子區(qū)間使得不等式成立.
根據(jù),解得實(shí)數(shù)取值范圍是.
(3)由,令.分,討論的符號(hào)及駐點(diǎn)情況.
1)當(dāng)時(shí),在恒成立,,此時(shí),函數(shù)沒有極值點(diǎn).
2)當(dāng)時(shí),
①當(dāng)時(shí),在恒成立,這時(shí),此時(shí),函數(shù)沒有極值點(diǎn).
②當(dāng)時(shí),
當(dāng)時(shí),易知,這時(shí)
當(dāng)時(shí),易知,這時(shí).
時(shí),是函數(shù)的極大值點(diǎn);是函數(shù)的極小值點(diǎn).
解答本題的主要難度在于轉(zhuǎn)化思想與分類討論思想的利用.
試題解析:(1)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043144816535.png" style="vertical-align:middle;" />,上增函數(shù),當(dāng)時(shí),取得最小值,上的最小值為.          4分
(2),設(shè).
依題意,在區(qū)間上存在子區(qū)間使得不等式成立.
注意到拋物線開口向上,所以只要即可.
,解得,
,得,
,即實(shí)數(shù)取值范圍是.          8分
(3),令。
1)顯然,當(dāng)時(shí),在恒成立,這時(shí),此時(shí),函數(shù)沒有極值點(diǎn).
2)當(dāng)時(shí),
①當(dāng)時(shí),在恒成立,這時(shí),此時(shí),函數(shù)沒有極值點(diǎn).
②當(dāng)時(shí),
當(dāng)時(shí),易知,這時(shí);
當(dāng)時(shí),易知,這時(shí).
時(shí),是函數(shù)的極大值點(diǎn);是函數(shù)的極小值點(diǎn).
綜上,當(dāng)時(shí),函數(shù)沒有極值點(diǎn);時(shí),是函數(shù)的極大值點(diǎn);是函數(shù)的極小值點(diǎn).    13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

己知a∈R,函數(shù)
(1)若a=1,求曲線在點(diǎn)(2,f (2))處的切線方程;
(2)若|a|>1,求在閉區(qū)間[0,|2a|]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知為函數(shù)圖象上一點(diǎn),O為坐標(biāo)原點(diǎn),記直線的斜率
(1)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)m的取值范圍;
(2)設(shè),若對(duì)任意恒有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是自然對(duì)數(shù)的底數(shù),函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)當(dāng)時(shí),函數(shù)的極大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=-x3+ax2-4(),是f(x)的導(dǎo)函數(shù).
(1)當(dāng)a=2時(shí),對(duì)任意的的最小值;
(2)若存在使f(x0)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)f(x)=ax3+bx+c(a≠0)為奇函數(shù),其圖象在點(diǎn)(1,f(1))處的切線與直線x-6y-7=0垂直,導(dǎo)函數(shù)f′(x)的最小值為-12.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間,并求函數(shù)f(x)在[-1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)。
(1)求函數(shù)的解析式;
(2)若對(duì)于任意,都有成立,求實(shí)數(shù)的取值范圍;
(3)設(shè),,且,求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)圖象與直線相切,切點(diǎn)橫坐標(biāo)為.
(1)求函數(shù)的表達(dá)式和直線的方程;(2)求函數(shù)的單調(diào)區(qū)間;
(3)若不等式對(duì)定義域內(nèi)的任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

8. 設(shè)函數(shù)fx)在R上可導(dǎo),其導(dǎo)函數(shù)為f ′x),且函數(shù)fx)在x=﹣2處取得極小值,則函數(shù)y=xf ′x)的圖象可能是( )

A                    B                    C                  D

查看答案和解析>>

同步練習(xí)冊(cè)答案